Effects of fungicide treatments on mycorrhizal communities and carbon acquisition in the mixotrophic Pyrola japonica (Ericaceae).

IF 3.3 2区 生物学 Q2 MYCOLOGY
Mycorrhiza Pub Date : 2024-07-01 Epub Date: 2024-06-26 DOI:10.1007/s00572-024-01157-5
Kohtaro Sakae, Shosei Kawai, Yudai Kitagami, Naoko Matsuo, Marc-André Selosse, Toko Tanikawa, Yosuke Matsuda
{"title":"Effects of fungicide treatments on mycorrhizal communities and carbon acquisition in the mixotrophic Pyrola japonica (Ericaceae).","authors":"Kohtaro Sakae, Shosei Kawai, Yudai Kitagami, Naoko Matsuo, Marc-André Selosse, Toko Tanikawa, Yosuke Matsuda","doi":"10.1007/s00572-024-01157-5","DOIUrl":null,"url":null,"abstract":"<p><p>Pyrola japonica, a member of the family Ericaceae, is a mixotroph that grows on forest floors and obtains carbon (C) from both its photosynthesis and its mycorrhizal fungi. Its mycorrhizal community is dominated by Russulaceae. However, the mechanism of its C acquisition and its flexibility are not well understood. Our aim was to assess the impact of disturbance of the mycorrhizal fungal communities on C acquisition by P. japonica. We repeatedly applied a fungicide (Benomyl) to soils around P. japonica plants in a broad-leaved forest of central Japan, in order to disturb fungal associates near roots. After fungicide treatment, P. japonica roots were collected and subjected to barcoding by next-generation sequencing, focusing on the ITS2 region. The rate of mycorrhizal formation and α-diversity did not significantly change upon fungicide treatments. Irrespective of the treatments, Russulaceae represented more than 80% of the taxa. Leaves and seeds of the plants were analysed for <sup>13</sup>C stable isotope ratios that reflect fungal C gain. Leaf and seed δ<sup>13</sup>C values with the fungicide treatment were significantly lower than those with the other treatments. Thus the fungicide did not affect mycorrhizal communities in the roots, but disturbed mycorrhizal fungal pathways via extraradical hyphae, and resulted in a more photosynthetic behaviour of P. japonica for leaves and seeds.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-024-01157-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pyrola japonica, a member of the family Ericaceae, is a mixotroph that grows on forest floors and obtains carbon (C) from both its photosynthesis and its mycorrhizal fungi. Its mycorrhizal community is dominated by Russulaceae. However, the mechanism of its C acquisition and its flexibility are not well understood. Our aim was to assess the impact of disturbance of the mycorrhizal fungal communities on C acquisition by P. japonica. We repeatedly applied a fungicide (Benomyl) to soils around P. japonica plants in a broad-leaved forest of central Japan, in order to disturb fungal associates near roots. After fungicide treatment, P. japonica roots were collected and subjected to barcoding by next-generation sequencing, focusing on the ITS2 region. The rate of mycorrhizal formation and α-diversity did not significantly change upon fungicide treatments. Irrespective of the treatments, Russulaceae represented more than 80% of the taxa. Leaves and seeds of the plants were analysed for 13C stable isotope ratios that reflect fungal C gain. Leaf and seed δ13C values with the fungicide treatment were significantly lower than those with the other treatments. Thus the fungicide did not affect mycorrhizal communities in the roots, but disturbed mycorrhizal fungal pathways via extraradical hyphae, and resulted in a more photosynthetic behaviour of P. japonica for leaves and seeds.

Abstract Image

杀真菌剂处理对混养粳稻菌根群落和碳获取的影响
木犀属(Pyrola japonica)是一种混养植物,生长在森林地面上,通过光合作用和菌根真菌获得碳(C)。它的菌根群落以茜草科植物为主。然而,人们对其获取碳的机制及其灵活性还不甚了解。我们的目的是评估菌根真菌群落的干扰对粳稻获取碳的影响。我们在日本中部的一片阔叶林中,反复向粳稻植株周围的土壤施用杀菌剂(苯菌灵),以干扰根部附近的真菌群落。在杀真菌剂处理后,我们收集了粳稻根,并通过新一代测序对其进行了条形码编码,重点是 ITS2 区域。菌根形成率和α-多样性在杀真菌剂处理后没有明显变化。无论采用哪种处理方法,茜草科植物都占分类群的 80% 以上。对植物的叶片和种子进行了 13C 稳定同位素比率分析,以反映真菌的碳增量。杀真菌剂处理的叶片和种子 δ13C 值明显低于其他处理。因此,杀真菌剂并没有影响根部的菌根群落,但通过根外菌丝干扰了菌根真菌途径,导致粳稻叶片和种子的光合作用更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mycorrhiza
Mycorrhiza 生物-真菌学
CiteScore
8.20
自引率
2.60%
发文量
40
审稿时长
6-12 weeks
期刊介绍: Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure. Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信