Théo Bouzigues, Olivier Maurelli, Frank Imbach, Jacques Prioux, Robin Candau
{"title":"A New Training Load Quantification Method at Supramaximal Intensity and Its Application in Injuries Among Members of an International Volleyball Team.","authors":"Théo Bouzigues, Olivier Maurelli, Frank Imbach, Jacques Prioux, Robin Candau","doi":"10.1519/JSC.0000000000004811","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Bouzigues, T, Maurelli, O, Imbach, F, Prioux, J, and Candau, R. A new training load quantification method at supramaximal intensity and its application in injuries among members of an international volleyball team. J Strength Cond Res 38(8): 1453-1463, 2024-The quantification of training loads (TLs) is essential for optimizing jump performance and reducing the occurrence of injuries. This study aimed to (a) propose a new method for quantifying TLs in explosive exercises, (b) determine the nature of the relationship between TLs dynamics and injury occurrence, and (c) assess a TL critical for training schedule purposes, above which the risk of injury occurrence becomes unacceptable. This study was conducted with 11 male volleyball players on a national team during a 5-month international competitive period. The proposed new method for quantifying TLs is based on a weighting factor applied to relative jumping intensities, determined by the number of sustainable jumps and their intensities measured by G-Vert accelerometer. The relationship between TLs dynamics and injury occurrence was assessed using a variable dose-response model. A high coefficient of determination was found between the maximum number of jumps possible and their intensities ( r2 = 0.94 ± 0.14, p < 0.001), indicating a strong physiological relationship between jumping intensities and the constraints imposed. The occurrence of injury was dependent on TLs dynamics for 2 players ( r2 = 0.26 ± 0.01; p < 0.001). The TL critical corresponded to 11 jumps over 80% of maximum jump height during games and approximately 130 jumps at <80% of maximal jump height. The present study proposes a new approach for quantifying supramaximal exercises and provides tools for training schedules and the prevention of volleyball injuries.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"1453-1463"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1519/JSC.0000000000004811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Bouzigues, T, Maurelli, O, Imbach, F, Prioux, J, and Candau, R. A new training load quantification method at supramaximal intensity and its application in injuries among members of an international volleyball team. J Strength Cond Res 38(8): 1453-1463, 2024-The quantification of training loads (TLs) is essential for optimizing jump performance and reducing the occurrence of injuries. This study aimed to (a) propose a new method for quantifying TLs in explosive exercises, (b) determine the nature of the relationship between TLs dynamics and injury occurrence, and (c) assess a TL critical for training schedule purposes, above which the risk of injury occurrence becomes unacceptable. This study was conducted with 11 male volleyball players on a national team during a 5-month international competitive period. The proposed new method for quantifying TLs is based on a weighting factor applied to relative jumping intensities, determined by the number of sustainable jumps and their intensities measured by G-Vert accelerometer. The relationship between TLs dynamics and injury occurrence was assessed using a variable dose-response model. A high coefficient of determination was found between the maximum number of jumps possible and their intensities ( r2 = 0.94 ± 0.14, p < 0.001), indicating a strong physiological relationship between jumping intensities and the constraints imposed. The occurrence of injury was dependent on TLs dynamics for 2 players ( r2 = 0.26 ± 0.01; p < 0.001). The TL critical corresponded to 11 jumps over 80% of maximum jump height during games and approximately 130 jumps at <80% of maximal jump height. The present study proposes a new approach for quantifying supramaximal exercises and provides tools for training schedules and the prevention of volleyball injuries.