Evaluating the prognostic value of tumor deposits in non-metastatic lymph node-positive colon adenocarcinoma using Cox regression and machine learning.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zhen Zheng, Hui Luo, Ke Deng, Qun Li, Quan Xu, Kaitai Liu
{"title":"Evaluating the prognostic value of tumor deposits in non-metastatic lymph node-positive colon adenocarcinoma using Cox regression and machine learning.","authors":"Zhen Zheng, Hui Luo, Ke Deng, Qun Li, Quan Xu, Kaitai Liu","doi":"10.1007/s00384-024-04671-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The 8th AJCC TNM staging for non-metastatic lymph node-positive colon adenocarcinoma patients(NMLP-CA) stages solely by lymph node status, irrespective of the positivity of tumor deposits (TD). This study uses machine learning and Cox regression to predict the prognostic value of tumor deposits in NMLP-CA.</p><p><strong>Methods: </strong>Patient data from the SEER registry (2010-2019) was used to develop CSS nomograms based on prognostic factors identified via multivariate Cox regression. Model performance was evaluated by c-index, dynamic calibration, and Schmid score. Shapley additive explanations (SHAP) were used to explain the selected models.</p><p><strong>Results: </strong>The study included 16,548 NMLP-CA patients, randomized 7:3 into training (n = 11,584) and test (n = 4964) sets. Multivariate Cox analysis identified TD, age, marital status, primary site, grade, pT stage, and pN stage as prognostic for cancer-specific survival (CSS). In the test set, the gradient boosting machine (GBM) model achieved the best C-index (0.733) for CSS prediction, while the Cox model and GAMBoost model optimized dynamic calibration(6.473) and Schmid score (0.285), respectively. TD ranked among the top 3 most important features in the models, with increasing predictive significance over time.</p><p><strong>Conclusions: </strong>Positive tumor deposit status confers worse prognosis in NMLP-CA patients. Tumor deposits may confer higher TNM staging. Furthermore, TD could play a more significant role in the staging system.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"39 1","pages":"97"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208197/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00384-024-04671-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The 8th AJCC TNM staging for non-metastatic lymph node-positive colon adenocarcinoma patients(NMLP-CA) stages solely by lymph node status, irrespective of the positivity of tumor deposits (TD). This study uses machine learning and Cox regression to predict the prognostic value of tumor deposits in NMLP-CA.

Methods: Patient data from the SEER registry (2010-2019) was used to develop CSS nomograms based on prognostic factors identified via multivariate Cox regression. Model performance was evaluated by c-index, dynamic calibration, and Schmid score. Shapley additive explanations (SHAP) were used to explain the selected models.

Results: The study included 16,548 NMLP-CA patients, randomized 7:3 into training (n = 11,584) and test (n = 4964) sets. Multivariate Cox analysis identified TD, age, marital status, primary site, grade, pT stage, and pN stage as prognostic for cancer-specific survival (CSS). In the test set, the gradient boosting machine (GBM) model achieved the best C-index (0.733) for CSS prediction, while the Cox model and GAMBoost model optimized dynamic calibration(6.473) and Schmid score (0.285), respectively. TD ranked among the top 3 most important features in the models, with increasing predictive significance over time.

Conclusions: Positive tumor deposit status confers worse prognosis in NMLP-CA patients. Tumor deposits may confer higher TNM staging. Furthermore, TD could play a more significant role in the staging system.

Abstract Image

利用考克斯回归和机器学习评估非转移性淋巴结阳性结肠腺癌中肿瘤沉积物的预后价值
背景:第8版AJCC TNM分期对非转移性淋巴结阳性结肠腺癌患者(NMLP-CA)的分期仅以淋巴结状态为依据,而与肿瘤沉积物(TD)的阳性与否无关。本研究利用机器学习和 Cox 回归预测肿瘤沉积在 NMLP-CA 中的预后价值:方法:利用SEER登记处(2010-2019年)的患者数据,根据多变量Cox回归确定的预后因素制定CSS提名图。模型性能通过c指数、动态校准和Schmid评分进行评估。结果:研究纳入了 16548 名 NMLP-CA 患者,按 7:3 随机分为训练集(n = 11584)和测试集(n = 4964)。多变量考克斯分析确定了TD、年龄、婚姻状况、原发部位、分级、pT分期和pN分期对癌症特异性生存率(CSS)的预后作用。在测试集中,梯度提升机(GBM)模型在预测 CSS 方面取得了最佳 C 指数(0.733),而 Cox 模型和 GAMBoost 模型分别优化了动态校准(6.473)和 Schmid 评分(0.285)。TD是模型中最重要的前3个特征之一,其预测意义随着时间的推移而增加:结论:肿瘤沉积物阳性会导致NMLP-CA患者预后较差。肿瘤沉积物可能导致更高的 TNM 分期。此外,TD 可能在分期系统中发挥更重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信