Significant Interaction between Melatonin and Titanium Bone Implants: Available Evidence and Future Research Directions.

IF 2.2 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Azam Hosseinzadeh, Abolfazl Bagherifard, Mohammad Sheibani, Arman Karimi-Behnagh, Russel J Reiter, Saeed Mehrzadi
{"title":"Significant Interaction between Melatonin and Titanium Bone Implants: Available Evidence and Future Research Directions.","authors":"Azam Hosseinzadeh, Abolfazl Bagherifard, Mohammad Sheibani, Arman Karimi-Behnagh, Russel J Reiter, Saeed Mehrzadi","doi":"10.2174/0113892010300967240610111644","DOIUrl":null,"url":null,"abstract":"<p><p>The trend in the incidence rate of bone fractures has been upward and as a result, the burden associated with orthopedic fractures has increased significantly. Titanium (Ti) implants are considered a preferred method of managing long bone fractures. However, no benefit comes without some downside, and using Ti implants is associated with several complications. In this respect, it was observed that in bones, Ti can disrupt the bone healing process by disturbing the balance of osteoclast and osteoblast activation and also increasing the production of inflammatory cytokines. Melatonin is a widely-acting molecule that possesses strong anti-oxidant features. This molecule reinforces mineral density and improves bone formation processes. In this review, we focused on the protective effect of melatonin in mitigating the Ti-related complications.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010300967240610111644","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The trend in the incidence rate of bone fractures has been upward and as a result, the burden associated with orthopedic fractures has increased significantly. Titanium (Ti) implants are considered a preferred method of managing long bone fractures. However, no benefit comes without some downside, and using Ti implants is associated with several complications. In this respect, it was observed that in bones, Ti can disrupt the bone healing process by disturbing the balance of osteoclast and osteoblast activation and also increasing the production of inflammatory cytokines. Melatonin is a widely-acting molecule that possesses strong anti-oxidant features. This molecule reinforces mineral density and improves bone formation processes. In this review, we focused on the protective effect of melatonin in mitigating the Ti-related complications.

褪黑素与钛骨植入物之间的显著相互作用:现有证据与未来研究方向
骨折发病率呈上升趋势,因此与骨科骨折相关的负担也大幅增加。钛(Ti)植入物被认为是治疗长骨骨折的首选方法。然而,有百利而无一害,使用钛植入物会产生一些并发症。在这方面,据观察,钛在骨骼中会扰乱破骨细胞和成骨细胞活化的平衡,并增加炎性细胞因子的产生,从而破坏骨愈合过程。褪黑素是一种作用广泛的分子,具有很强的抗氧化功能。这种分子能增强矿物质密度,改善骨形成过程。在这篇综述中,我们重点讨论了褪黑激素在减轻钛相关并发症方面的保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current pharmaceutical biotechnology
Current pharmaceutical biotechnology 医学-生化与分子生物学
CiteScore
5.60
自引率
3.60%
发文量
203
审稿时长
6 months
期刊介绍: Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include: DNA/protein engineering and processing Synthetic biotechnology Omics (genomics, proteomics, metabolomics and systems biology) Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes) Drug delivery and targeting Nanobiotechnology Molecular pharmaceutics and molecular pharmacology Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes) Pharmacokinetics and pharmacodynamics Applied Microbiology Bioinformatics (computational biopharmaceutics and modeling) Environmental biotechnology Regenerative medicine (stem cells, tissue engineering and biomaterials) Translational immunology (cell therapies, antibody engineering, xenotransplantation) Industrial bioprocesses for drug production and development Biosafety Biotech ethics Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信