M. Weidemann, D. Werhahn, C. Mayer, S. Kläger, C. Ritter, P. Manuel, J. P. Attfield, Simon D. Kloß
{"title":"High-pressure synthesis of Ruddlesden–Popper nitrides","authors":"M. Weidemann, D. Werhahn, C. Mayer, S. Kläger, C. Ritter, P. Manuel, J. P. Attfield, Simon D. Kloß","doi":"10.1038/s41557-024-01558-1","DOIUrl":null,"url":null,"abstract":"Layered perovskites with Ruddlesden–Popper-type structures are fundamentally important for low-dimensional properties, for example, photovoltaic hybrid iodides and superconducting copper oxides. Many such halides and oxides are known, but analogous nitrides are difficult to stabilize due to the high cation oxidation states required to balance the anion charges. Here we report the high-pressure synthesis of three single-layer Ruddlesden–Popper (K2NiF4 type) nitrides—Pr2ReN4, Nd2ReN4 and Ce2TaN4—along with their structural characterization and properties. The R2ReN4 materials (R = Pr and Nd) are metallic, and Nd2ReN4 has a ferromagnetic Nd3+ spin order below 15 K. Thermal decomposition gives R2ReN3 with a Peierls-type distortion and chains of Re–Re multiply bonded dimers. Ce2TaN4 has a structural transition driven by octahedral tilting, with local distortions and canted magnetic Ce3+ order evidencing two-dimensional Ce3+/Ce4+ charge ordering correlations. Our work demonstrates that Ruddlesden–Popper nitrides with varied structural, electronic and magnetic properties can be prepared from high-pressure synthesis, opening the door to related layered nitride materials. Nitrogen-rich Ruddlesden–Popper nitrides are notoriously difficult to stabilize. Now a high-pressure high-temperature synthesis method has enabled the preparation of Pr2ReN4, Nd2ReN4 and Ce2TaN4. Neutron diffraction analysis reveals fully nitrided materials and intricate magnetic structures.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":null,"pages":null},"PeriodicalIF":19.2000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41557-024-01558-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Layered perovskites with Ruddlesden–Popper-type structures are fundamentally important for low-dimensional properties, for example, photovoltaic hybrid iodides and superconducting copper oxides. Many such halides and oxides are known, but analogous nitrides are difficult to stabilize due to the high cation oxidation states required to balance the anion charges. Here we report the high-pressure synthesis of three single-layer Ruddlesden–Popper (K2NiF4 type) nitrides—Pr2ReN4, Nd2ReN4 and Ce2TaN4—along with their structural characterization and properties. The R2ReN4 materials (R = Pr and Nd) are metallic, and Nd2ReN4 has a ferromagnetic Nd3+ spin order below 15 K. Thermal decomposition gives R2ReN3 with a Peierls-type distortion and chains of Re–Re multiply bonded dimers. Ce2TaN4 has a structural transition driven by octahedral tilting, with local distortions and canted magnetic Ce3+ order evidencing two-dimensional Ce3+/Ce4+ charge ordering correlations. Our work demonstrates that Ruddlesden–Popper nitrides with varied structural, electronic and magnetic properties can be prepared from high-pressure synthesis, opening the door to related layered nitride materials. Nitrogen-rich Ruddlesden–Popper nitrides are notoriously difficult to stabilize. Now a high-pressure high-temperature synthesis method has enabled the preparation of Pr2ReN4, Nd2ReN4 and Ce2TaN4. Neutron diffraction analysis reveals fully nitrided materials and intricate magnetic structures.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.