{"title":"Convex Characteristics of Quaternionic Positive Definite Functions on Abelian Groups","authors":"Jingning Liu, Zeping Zhu","doi":"10.1007/s00006-024-01336-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with the topological space of normalized quaternion-valued positive definite functions on an arbitrary abelian group <i>G</i>, especially its convex characteristics. There are two main results. Firstly, we prove that the extreme elements in the family of such functions are exactly the homomorphisms from <i>G</i> to the sphere group <span>\\({\\mathbb {S}}\\)</span>, i.e., the unit 3-sphere in the quaternion algebra. Secondly, we reveal a new phenomenon: The compact convex set of such functions is not a Bauer simplex except when <i>G</i> is of exponent <span>\\(\\le 2\\)</span>. In contrast, its complex counterpart is always a Bauer simplex, as is well known. We also present an integral representation for such functions as an application and some other minor results.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01336-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is concerned with the topological space of normalized quaternion-valued positive definite functions on an arbitrary abelian group G, especially its convex characteristics. There are two main results. Firstly, we prove that the extreme elements in the family of such functions are exactly the homomorphisms from G to the sphere group \({\mathbb {S}}\), i.e., the unit 3-sphere in the quaternion algebra. Secondly, we reveal a new phenomenon: The compact convex set of such functions is not a Bauer simplex except when G is of exponent \(\le 2\). In contrast, its complex counterpart is always a Bauer simplex, as is well known. We also present an integral representation for such functions as an application and some other minor results.
本文关注任意无方群 G 上归一化四元值正定函数的拓扑空间,尤其是其凸特性。主要结果有两个。首先,我们证明了此类函数族中的极值元素正是从 G 到球面群 \({\mathbb {S}}\) 的同构,即四元数代数中的单位 3 球面。其次,我们揭示了一个新现象:除了当 G 的指数为 \(\le 2\) 时,这类函数的紧凑凸集不是鲍尔单纯形。相反,它的复数对应集总是鲍尔单纯形,这是众所周知的。作为应用,我们还提出了这类函数的积分表示法和其他一些次要结果。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.