Minimizing Noise in Distributed Reflector Laser Types Under Optical Injection Locking

IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Arbnor Berisha;Hendrik Boerma;Ronald Kaiser;Patrick Runge;Martin Schell
{"title":"Minimizing Noise in Distributed Reflector Laser Types Under Optical Injection Locking","authors":"Arbnor Berisha;Hendrik Boerma;Ronald Kaiser;Patrick Runge;Martin Schell","doi":"10.1109/JQE.2024.3412088","DOIUrl":null,"url":null,"abstract":"Complex coupled distributed feedback (DFB) lasers and sampled grating distributed Bragg reflector (SGDBR) lasers under optical injection locking are investigated to determine lowest noise operation. A noise reduction (frequency and intensity combined) of up to 15 dB was measured utilizing detuned optical injection locking at the relaxation oscillation frequency. Furthermore, 4 dB improvement in frequency noise at 10 kHz offset for higher coupling coefficient DFBs under injection locking was measured. The DFB lasers show more sensitivity to injection locking and have a lower need of injection power while exhibiting better signal to noise ratio compared to an SGDBR.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 4","pages":"1-6"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10552750","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10552750/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Complex coupled distributed feedback (DFB) lasers and sampled grating distributed Bragg reflector (SGDBR) lasers under optical injection locking are investigated to determine lowest noise operation. A noise reduction (frequency and intensity combined) of up to 15 dB was measured utilizing detuned optical injection locking at the relaxation oscillation frequency. Furthermore, 4 dB improvement in frequency noise at 10 kHz offset for higher coupling coefficient DFBs under injection locking was measured. The DFB lasers show more sensitivity to injection locking and have a lower need of injection power while exhibiting better signal to noise ratio compared to an SGDBR.
最大限度降低光注入锁定下分布式反射激光器类型的噪声
研究了光注入锁定下的复杂耦合分布式反馈(DFB)激光器和采样光栅分布式布拉格反射器(SGDBR)激光器,以确定最低工作噪声。通过在弛豫振荡频率上使用失谐光注入锁定,测得噪声(频率和强度组合)降低达 15 分贝。此外,在注入锁定条件下,测量到耦合系数较高的 DFB 在 10 kHz 偏移时的频率噪声降低了 4 分贝。与 SGDBR 相比,DFB 激光器对注入锁定的敏感度更高,对注入功率的需求更低,信噪比更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Quantum Electronics
IEEE Journal of Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.70
自引率
4.00%
发文量
99
审稿时长
3.0 months
期刊介绍: The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信