Zhang Meng;Naruya Mochizuki;Shiryu Oiwa;Hua Zhao;Peng Wang;Hongpu Li
{"title":"Helical Long-Period Fiber Grating-Based Band- Selectable and Bandwidth-Enhanced Flat-Top Filter and Its Application to Wideband OAM Mode Converter","authors":"Zhang Meng;Naruya Mochizuki;Shiryu Oiwa;Hua Zhao;Peng Wang;Hongpu Li","doi":"10.1109/JQE.2024.3410234","DOIUrl":null,"url":null,"abstract":"A band-selectable and bandwidth-enhanced flat-top rejection filter is proposed and demonstrated both theoretically and experimentally, which is realized by using single-mode fiber (SMF)-based helical long-period fiber gratings (HLPGs) precisely operated at dispersion turning points (DTPs) of the same azimuthal order cladding mode but with different radial indices. As an important application of such HLPGs, the orbital angular momentum (OAM) mode converters enabling to have either a flat-top bandwidth of ~116 nm@-16 dB but centered at wavelength of ~1530 nm, or a flat-top bandwidth ~130 nm @-16 dB but centered at wavelength of ~1650 nm, have been successfully demonstrated. This is the first report for the experimental demonstration of such high-performance band-rejection filters with bands fully matching the C-L bands of the fiber communication. The proposed HLPGs may find potential applications to OAM mode converters, OAM tweezers, and OAM sensors.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10549989/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A band-selectable and bandwidth-enhanced flat-top rejection filter is proposed and demonstrated both theoretically and experimentally, which is realized by using single-mode fiber (SMF)-based helical long-period fiber gratings (HLPGs) precisely operated at dispersion turning points (DTPs) of the same azimuthal order cladding mode but with different radial indices. As an important application of such HLPGs, the orbital angular momentum (OAM) mode converters enabling to have either a flat-top bandwidth of ~116 nm@-16 dB but centered at wavelength of ~1530 nm, or a flat-top bandwidth ~130 nm @-16 dB but centered at wavelength of ~1650 nm, have been successfully demonstrated. This is the first report for the experimental demonstration of such high-performance band-rejection filters with bands fully matching the C-L bands of the fiber communication. The proposed HLPGs may find potential applications to OAM mode converters, OAM tweezers, and OAM sensors.
期刊介绍:
The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.