The pluripotency state of human embryonic stem cells derived from single blastomeres of eight-cell embryos

IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology
{"title":"The pluripotency state of human embryonic stem cells derived from single blastomeres of eight-cell embryos","authors":"","doi":"10.1016/j.cdev.2024.203935","DOIUrl":null,"url":null,"abstract":"<div><p>Human embryonic stem cells (hESCs) derived from blastocyst stage embryos present a primed state of pluripotency, whereas mouse ESCs (mESCs) display naïve pluripotency. Their unique characteristics make naïve hESCs more suitable for particular applications in biomedical research. This work aimed to derive hESCs from single blastomeres and determine their pluripotency state, which is currently unclear. We derived hESC lines from single blastomeres of 8-cell embryos and from whole blastocysts, and analysed several naïve pluripotency indicators, their transcriptomic profile and their trilineage differentiation potential. No significant differences were observed between blastomere-derived hESCs (bm-hESCs) and blastocyst-derived hESCs (bc-hESCs) for most naïve pluripotency indicators, including TFE3 localization, mitochondrial activity, and global DNA methylation and hydroxymethylation, nor for their trilineage differentiation potential. Nevertheless, bm-hESCs showed an increased single-cell clonogenicity and a higher expression of naïve pluripotency markers at early passages than bc-hESCs. Furthermore, RNA-seq revealed that bc-hESCs overexpressed a set of genes related to the post-implantational epiblast. Altogether, these results suggest that bm-hESCs, although displaying primed pluripotency, would be slightly closer to the naïve end of the pluripotency continuum than bc-hESCs.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"179 ","pages":"Article 203935"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667290124000366/pdfft?md5=b40ca074f6560789f44ccd6742c38a54&pid=1-s2.0-S2667290124000366-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells and Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667290124000366","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Human embryonic stem cells (hESCs) derived from blastocyst stage embryos present a primed state of pluripotency, whereas mouse ESCs (mESCs) display naïve pluripotency. Their unique characteristics make naïve hESCs more suitable for particular applications in biomedical research. This work aimed to derive hESCs from single blastomeres and determine their pluripotency state, which is currently unclear. We derived hESC lines from single blastomeres of 8-cell embryos and from whole blastocysts, and analysed several naïve pluripotency indicators, their transcriptomic profile and their trilineage differentiation potential. No significant differences were observed between blastomere-derived hESCs (bm-hESCs) and blastocyst-derived hESCs (bc-hESCs) for most naïve pluripotency indicators, including TFE3 localization, mitochondrial activity, and global DNA methylation and hydroxymethylation, nor for their trilineage differentiation potential. Nevertheless, bm-hESCs showed an increased single-cell clonogenicity and a higher expression of naïve pluripotency markers at early passages than bc-hESCs. Furthermore, RNA-seq revealed that bc-hESCs overexpressed a set of genes related to the post-implantational epiblast. Altogether, these results suggest that bm-hESCs, although displaying primed pluripotency, would be slightly closer to the naïve end of the pluripotency continuum than bc-hESCs.

Abstract Image

从八个细胞胚胎的单个胚泡中提取的人类胚胎干细胞的全能性状态。
从胚泡期胚胎中提取的人类胚胎干细胞(hESCs)具有原始多能性,而小鼠胚胎干细胞(mESCs)则具有幼稚多能性。它们的独特特性使天真的 hESCs 更适合生物医学研究中的特定应用。这项工作旨在从单个胚泡中提取 hESCs,并确定它们的多能性状态(目前尚不清楚)。我们从 8 细胞胚胎的单个胚泡和整个胚泡中提取了 hESC 株系,并分析了几种幼稚多能性指标、它们的转录组图谱及其三系分化潜能。在大多数幼稚多能性指标(包括 TFE3 定位、线粒体活性、全局 DNA 甲基化和羟甲基化)及其三系分化潜能方面,囊胚来源的 hESCs(bm-hESCs)与囊胚来源的 hESCs(bc-hESCs)之间未观察到明显差异。不过,与 bc-hESCs 相比,bm-hESCs 的单细胞克隆性增强,早期幼稚多能性标志物的表达量更高。此外,RNA-seq显示,bc-hESCs过度表达了一组与植入后上胚层相关的基因。总之,这些结果表明,bm-hESCs 虽然显示出原始多能性,但比 bc-hESCs 更接近多能性连续体的幼稚端。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cells and Development
Cells and Development Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
2.90
自引率
0.00%
发文量
33
审稿时长
41 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信