{"title":"Effects of human umbilical cord mesenchymal stem cell-derived exosomes in the rat osteoarthritis models.","authors":"Huanfeng Yang, Yiqin Zhou, Bi Ying, Xuhui Dong, Qirong Qian, Shaorong Gao","doi":"10.1093/stcltm/szae031","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) offer great potential for treatment of osteoarthritis (OA) by promoting articular cartilage regeneration via paracrine secretion of exosomes; however, the underlying mechanisms are not fully understood. This study aimed to explore the therapeutic effects of exosomes secreted by human umbilical cord-derived MSCs (hUC-MSCs) in rat models of OA and reveal the underlying mechanisms. UC-MSCs and UC-MSC-exosomes were prepared and identified by transmission electron microscopy and flow cytometry. IL-1β-induced OA chondrocytes and the operation and collagenase-induced OA rat models were established. The results of micro-computed tomography, histology, and immunohistochemistry showed that UC-MSC-exosomes promoted cartilage regeneration in OA rats. ELISA results showed that the levels of synovial fluid cytokines, TNF-α, IL-1β, and IL-6, were lower in exosome therapy group than control group in both OA rat models. Exosome treatment significantly downregulated the expression of MMP-13 and ADAMTS-5 in chondrocytes stimulated by IL-1β, and upregulated collagen II expression. These findings suggest that hUC-MSC-exosomes offer a promising option for the therapy for OA.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"803-811"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szae031","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Mesenchymal stem cells (MSCs) offer great potential for treatment of osteoarthritis (OA) by promoting articular cartilage regeneration via paracrine secretion of exosomes; however, the underlying mechanisms are not fully understood. This study aimed to explore the therapeutic effects of exosomes secreted by human umbilical cord-derived MSCs (hUC-MSCs) in rat models of OA and reveal the underlying mechanisms. UC-MSCs and UC-MSC-exosomes were prepared and identified by transmission electron microscopy and flow cytometry. IL-1β-induced OA chondrocytes and the operation and collagenase-induced OA rat models were established. The results of micro-computed tomography, histology, and immunohistochemistry showed that UC-MSC-exosomes promoted cartilage regeneration in OA rats. ELISA results showed that the levels of synovial fluid cytokines, TNF-α, IL-1β, and IL-6, were lower in exosome therapy group than control group in both OA rat models. Exosome treatment significantly downregulated the expression of MMP-13 and ADAMTS-5 in chondrocytes stimulated by IL-1β, and upregulated collagen II expression. These findings suggest that hUC-MSC-exosomes offer a promising option for the therapy for OA.
间充质干细胞(MSCs)通过旁分泌外泌体促进关节软骨再生,为治疗骨关节炎(OA)提供了巨大的潜力;然而,其潜在机制尚未完全明了。本研究旨在探索人脐源性间充质干细胞(hUC-MSCs)分泌的外泌体对大鼠OA模型的治疗作用,并揭示其潜在机制。研究制备了UC-间充质干细胞和UC-间充质干细胞外泌体,并通过透射电子显微镜和流式细胞术进行了鉴定。建立了IL-1β诱导的OA软骨细胞以及手术和胶原酶诱导的OA大鼠模型。显微计算机断层扫描、组织学和免疫组化的结果表明,UC-间充质干细胞外泌体促进了 OA 大鼠软骨的再生。ELISA结果表明,在两种OA大鼠模型中,外泌体治疗组滑膜液细胞因子TNF-α、IL-1β和IL-6的水平均低于对照组。在IL-1β刺激下,外泌体治疗组能明显下调软骨细胞中MMP-13和ADAMTS-5的表达,并上调胶原蛋白II的表达。这些研究结果表明,hUC-间充质干细胞外泌体为治疗OA提供了一种前景广阔的选择。
期刊介绍:
STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal.
STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes.
The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.