Zeyun Xue, Marina Ferrand, Elodie Gilbault, Olivier Zurfluh, Gilles Clément, Anne Marmagne, Stéphanie Huguet, José M Jiménez-Gómez, Anne Krapp, Christian Meyer, Olivier Loudet
{"title":"Natural variation in response to combined water and nitrogen deficiencies in Arabidopsis.","authors":"Zeyun Xue, Marina Ferrand, Elodie Gilbault, Olivier Zurfluh, Gilles Clément, Anne Marmagne, Stéphanie Huguet, José M Jiménez-Gómez, Anne Krapp, Christian Meyer, Olivier Loudet","doi":"10.1093/plcell/koae173","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding plant responses to individual stresses does not mean that we understand real-world situations, where stresses usually combine and interact. These interactions arise at different levels, from stress exposure to the molecular networks of the stress response. Here, we built an in-depth multiomic description of plant responses to mild water (W) and nitrogen (N) limitations, either individually or combined, among 5 genetically different Arabidopsis (Arabidopsis thaliana) accessions. We highlight the different dynamics in stress response through integrative traits such as rosette growth and the physiological status of the plants. We also used transcriptomic and metabolomic profiling during a stage when the plant response was stabilized to determine the wide diversity in stress-induced changes among accessions, highlighting the limited reality of a \"universal\" stress response. The main effect of the W × N interaction was an attenuation of the N-deficiency syndrome when combined with mild drought, but to a variable extent depending on the accession. Other traits subject to W × N interactions are often accession specific. Multiomic analyses identified a subset of transcript-metabolite clusters that are critical to stress responses but essentially variable according to the genotype factor. Including intraspecific diversity in our descriptions of plant stress response places our findings in perspective.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371182/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koae173","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding plant responses to individual stresses does not mean that we understand real-world situations, where stresses usually combine and interact. These interactions arise at different levels, from stress exposure to the molecular networks of the stress response. Here, we built an in-depth multiomic description of plant responses to mild water (W) and nitrogen (N) limitations, either individually or combined, among 5 genetically different Arabidopsis (Arabidopsis thaliana) accessions. We highlight the different dynamics in stress response through integrative traits such as rosette growth and the physiological status of the plants. We also used transcriptomic and metabolomic profiling during a stage when the plant response was stabilized to determine the wide diversity in stress-induced changes among accessions, highlighting the limited reality of a "universal" stress response. The main effect of the W × N interaction was an attenuation of the N-deficiency syndrome when combined with mild drought, but to a variable extent depending on the accession. Other traits subject to W × N interactions are often accession specific. Multiomic analyses identified a subset of transcript-metabolite clusters that are critical to stress responses but essentially variable according to the genotype factor. Including intraspecific diversity in our descriptions of plant stress response places our findings in perspective.
期刊介绍:
Title: Plant Cell
Publisher:
Published monthly by the American Society of Plant Biologists (ASPB)
Produced by Sheridan Journal Services, Waterbury, VT
History and Impact:
Established in 1989
Within three years of publication, ranked first in impact among journals in plant sciences
Maintains high standard of excellence
Scope:
Publishes novel research of special significance in plant biology
Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution
Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience
Tenets:
Publish the most exciting, cutting-edge research in plant cellular and molecular biology
Provide rapid turnaround time for reviewing and publishing research papers
Ensure highest quality reproduction of data
Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.