C Benavente, P Padial, B R Scott, F Almeida, G Olcina, S Pérez-Regalado, B Feriche
{"title":"Strength and muscle mass development after a resistance-training period at terrestrial and normobaric intermittent hypoxia.","authors":"C Benavente, P Padial, B R Scott, F Almeida, G Olcina, S Pérez-Regalado, B Feriche","doi":"10.1007/s00424-024-02978-1","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the effect of a resistance training (R<sub>T</sub>) period at terrestrial (HH) and normobaric hypoxia (NH) on both muscle hypertrophy and maximal strength development with respect to the same training in normoxia (N). Thirty-three strength-trained males were assigned to N (FiO<sub>2</sub> = 20.9%), HH (2,320 m asl) or NH (FiO<sub>2</sub> = 15.9%). The participants completed an 8-week R<sub>T</sub> program (3 sessions/week) of a full body routine. Muscle thickness of the lower limb and 1RM in back squat were assessed before and after the training program. Blood markers of stress, inflammation (IL-6) and muscle growth (% active mTOR, myostatin and miRNA-206) were measured before and after the first and last session of the program. Findings revealed all groups improved 1RM, though this was most enhanced by R<sub>T</sub> in NH (p = 0.026). According to the moderate to large excess of the exercise-induced stress response (lactate and Ca<sup>2+</sup>) in HH and N, results only displayed increases in muscle thickness in these two conditions over NH (ES > 1.22). Compared with the rest of the environmental conditions, small to large increments in % active mTOR were only found in HH, and IL-6, myostatin and miR-206 in NH throughout the training period. In conclusion, the results do not support the expected additional benefit of R<sub>T</sub> under hypoxia compared to N on muscle growth, although it seems to favour gains in strength. The greater muscle growth achieved in HH over NH confirms the impact of the type of hypoxia on the outcomes.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":"1221-1233"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271399/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-024-02978-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the effect of a resistance training (RT) period at terrestrial (HH) and normobaric hypoxia (NH) on both muscle hypertrophy and maximal strength development with respect to the same training in normoxia (N). Thirty-three strength-trained males were assigned to N (FiO2 = 20.9%), HH (2,320 m asl) or NH (FiO2 = 15.9%). The participants completed an 8-week RT program (3 sessions/week) of a full body routine. Muscle thickness of the lower limb and 1RM in back squat were assessed before and after the training program. Blood markers of stress, inflammation (IL-6) and muscle growth (% active mTOR, myostatin and miRNA-206) were measured before and after the first and last session of the program. Findings revealed all groups improved 1RM, though this was most enhanced by RT in NH (p = 0.026). According to the moderate to large excess of the exercise-induced stress response (lactate and Ca2+) in HH and N, results only displayed increases in muscle thickness in these two conditions over NH (ES > 1.22). Compared with the rest of the environmental conditions, small to large increments in % active mTOR were only found in HH, and IL-6, myostatin and miR-206 in NH throughout the training period. In conclusion, the results do not support the expected additional benefit of RT under hypoxia compared to N on muscle growth, although it seems to favour gains in strength. The greater muscle growth achieved in HH over NH confirms the impact of the type of hypoxia on the outcomes.
期刊介绍:
Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.