William A. Noftz , Emily E. Echols , Nichole L. Beebe , Jeffrey G. Mellott , Brett R. Schofield
{"title":"Differential cholinergic innervation of lemniscal versus non-lemniscal regions of the inferior colliculus","authors":"William A. Noftz , Emily E. Echols , Nichole L. Beebe , Jeffrey G. Mellott , Brett R. Schofield","doi":"10.1016/j.jchemneu.2024.102443","DOIUrl":null,"url":null,"abstract":"<div><p>The inferior colliculus (IC), a midbrain hub for integration of auditory information, receives dense cholinergic input that could modulate nearly all aspects of hearing. A key step in understanding cholinergic modulation is to identify the source(s) and termination patterns of cholinergic input. These issues have not been addressed for the IC in mice, an increasingly important model for study of hearing. We examined cholinergic inputs to the IC in adult male and female mice. We used retrograde tracing and immunochemistry to identify three sources of cholinergic innervation of the mouse IC: the pedunculopontine tegmental nucleus (PPT), the laterodorsal tegmental nucleus (LDT) and the lateral paragigantocellular nucleus (LPGi). We then used Cre-dependent labeling of cholinergic neurons in normal-hearing ChAT-Cre mice to selectively label the cholinergic projections to the IC from each of the cholinergic sources. Labeling of cholinergic projections from the PPT and LDT revealed cholinergic axons and boutons terminating throughout the IC, with the ipsilateral projection being denser. Electron microscopic examination showed that these cholinergic axons can form traditional synaptic junctions with IC neurons. In separate experiments, selective labeling of cholinergic projections from the LPGi revealed bilateral projections to the IC. The LPGi axons exhibited relatively equal densities on ipsilateral and contralateral sides, but on both sides the terminations were largely restricted to the non-lemniscal regions of the IC (i.e., the dorsal cortex, lateral cortex and intercollicular tegmentum). We conclude first that cholinergic axons can form traditional synapses in the IC. In addition, lemniscal and non-lemniscal regions of the IC receive different patterns of cholinergic innervation. The lemniscal IC (IC central nucleus) is innervated by cholinergic neurons in the PPT and the LDT whereas the non-lemniscal “shell” areas of the IC are innervated by the PPT and LDT and by cholinergic neurons in the LPGi.</p></div><div><h3>Data Availability</h3><p>Data will be made available on request.</p></div>","PeriodicalId":15324,"journal":{"name":"Journal of chemical neuroanatomy","volume":"139 ","pages":"Article 102443"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0891061824000577/pdfft?md5=0ba7fa7d7b0108c426d9a93ac7c12f45&pid=1-s2.0-S0891061824000577-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891061824000577","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The inferior colliculus (IC), a midbrain hub for integration of auditory information, receives dense cholinergic input that could modulate nearly all aspects of hearing. A key step in understanding cholinergic modulation is to identify the source(s) and termination patterns of cholinergic input. These issues have not been addressed for the IC in mice, an increasingly important model for study of hearing. We examined cholinergic inputs to the IC in adult male and female mice. We used retrograde tracing and immunochemistry to identify three sources of cholinergic innervation of the mouse IC: the pedunculopontine tegmental nucleus (PPT), the laterodorsal tegmental nucleus (LDT) and the lateral paragigantocellular nucleus (LPGi). We then used Cre-dependent labeling of cholinergic neurons in normal-hearing ChAT-Cre mice to selectively label the cholinergic projections to the IC from each of the cholinergic sources. Labeling of cholinergic projections from the PPT and LDT revealed cholinergic axons and boutons terminating throughout the IC, with the ipsilateral projection being denser. Electron microscopic examination showed that these cholinergic axons can form traditional synaptic junctions with IC neurons. In separate experiments, selective labeling of cholinergic projections from the LPGi revealed bilateral projections to the IC. The LPGi axons exhibited relatively equal densities on ipsilateral and contralateral sides, but on both sides the terminations were largely restricted to the non-lemniscal regions of the IC (i.e., the dorsal cortex, lateral cortex and intercollicular tegmentum). We conclude first that cholinergic axons can form traditional synapses in the IC. In addition, lemniscal and non-lemniscal regions of the IC receive different patterns of cholinergic innervation. The lemniscal IC (IC central nucleus) is innervated by cholinergic neurons in the PPT and the LDT whereas the non-lemniscal “shell” areas of the IC are innervated by the PPT and LDT and by cholinergic neurons in the LPGi.
期刊介绍:
The Journal of Chemical Neuroanatomy publishes scientific reports relating the functional and biochemical aspects of the nervous system with its microanatomical organization. The scope of the journal concentrates on reports which combine microanatomical, biochemical, pharmacological and behavioural approaches.
Papers should offer original data correlating the morphology of the nervous system (the brain and spinal cord in particular) with its biochemistry. The Journal of Chemical Neuroanatomy is particularly interested in publishing important studies performed with up-to-date methodology utilizing sensitive chemical microassays, hybridoma technology, immunocytochemistry, in situ hybridization and receptor radioautography, to name a few examples.
The Journal of Chemical Neuroanatomy is the natural vehicle for integrated studies utilizing these approaches. The articles will be selected by the editorial board and invited reviewers on the basis of their excellence and potential contribution to this field of neurosciences. Both in vivo and in vitro integrated studies in chemical neuroanatomy are appropriate subjects of interest to the journal. These studies should relate only to vertebrate species with particular emphasis on the mammalian and primate nervous systems.