Aortic valve area index values of Trifecta implants correlate with energy loss and increased valve stress.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Toru Tsukada, Yasuyuki Suzuki, Bryan J Mathis, Kimi Sato, Takeshi Kawamata, Akito Imai, Tomomi Nakajima, Yuichiro Kaminishi, Hideyuki Kato, Hiroaki Sakamoto, Yuji Hiramatsu
{"title":"Aortic valve area index values of Trifecta implants correlate with energy loss and increased valve stress.","authors":"Toru Tsukada, Yasuyuki Suzuki, Bryan J Mathis, Kimi Sato, Takeshi Kawamata, Akito Imai, Tomomi Nakajima, Yuichiro Kaminishi, Hideyuki Kato, Hiroaki Sakamoto, Yuji Hiramatsu","doi":"10.1007/s10047-024-01453-z","DOIUrl":null,"url":null,"abstract":"<p><p>Biological valves are becoming more frequently used in aortic valve replacement. While several reports have evaluated the performance of biological valves, echocardiography studies during exercise stress remain scarce. Furthermore, no current reports compare rate changes in the aortic valve area of biological valves under increased exercise load. Here, we performed exercise stress echocardiography in patients after AVR with Trifecta or Inspiris valves and compared the rates of change in aortic valve areas (AVA). In addition, hydrodynamic analysis at rest was conducted with four-dimensional flow magnetic resonance imaging (4D-flow MRI). Exercise stress echocardiography was performed in seven Trifecta and seven Inspiris patients who underwent AVR at our hospital while 4D flow MRI was performed in all but two Trifecta cases. Comparing the percentage change in AVA when loaded to 25 W versus at rest, Trifecta was greater than Inspiris (28.7 ± 36.0 vs - 0.8 ± 12.4%). The smaller AVA at rest was considered causative for this. Meanwhile, Trifecta systolic energy loss in the prosthetic valve segment on 4D-flow MRI (97.5 ± 35.9 vs 52.7 ± 25.3 mW) was higher than Inspiris. The opening of the Trifecta valve was considered to be restricted at rest and this may reflect the current reports of early valve degradation requiring reoperation. Taken together, we observed that the Trifecta design may promote faster wear due to higher valve stress.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10047-024-01453-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biological valves are becoming more frequently used in aortic valve replacement. While several reports have evaluated the performance of biological valves, echocardiography studies during exercise stress remain scarce. Furthermore, no current reports compare rate changes in the aortic valve area of biological valves under increased exercise load. Here, we performed exercise stress echocardiography in patients after AVR with Trifecta or Inspiris valves and compared the rates of change in aortic valve areas (AVA). In addition, hydrodynamic analysis at rest was conducted with four-dimensional flow magnetic resonance imaging (4D-flow MRI). Exercise stress echocardiography was performed in seven Trifecta and seven Inspiris patients who underwent AVR at our hospital while 4D flow MRI was performed in all but two Trifecta cases. Comparing the percentage change in AVA when loaded to 25 W versus at rest, Trifecta was greater than Inspiris (28.7 ± 36.0 vs - 0.8 ± 12.4%). The smaller AVA at rest was considered causative for this. Meanwhile, Trifecta systolic energy loss in the prosthetic valve segment on 4D-flow MRI (97.5 ± 35.9 vs 52.7 ± 25.3 mW) was higher than Inspiris. The opening of the Trifecta valve was considered to be restricted at rest and this may reflect the current reports of early valve degradation requiring reoperation. Taken together, we observed that the Trifecta design may promote faster wear due to higher valve stress.

Abstract Image

Trifecta 植入物的主动脉瓣面积指数值与能量损失和瓣膜应力增加相关。
生物瓣膜越来越多地被用于主动脉瓣置换术。虽然有一些报告对生物瓣膜的性能进行了评估,但运动负荷时的超声心动图研究仍然很少。此外,目前还没有报告对生物瓣膜在运动负荷增加时主动脉瓣面积的速率变化进行比较。在此,我们对使用 Trifecta 或 Inspiris 瓣膜进行主动脉瓣置换术后的患者进行了运动负荷超声心动图检查,并比较了主动脉瓣面积(AVA)的变化率。此外,还利用四维血流磁共振成像(4D-flow MRI)对静息时的流体动力学进行了分析。在我院接受主动脉瓣置换术的七名 Trifecta 和七名 Inspiris 患者均接受了运动负荷超声心动图检查,除两名 Trifecta 患者外,其他患者均接受了四维血流磁共振成像检查。比较加载到 25 W 时与静息时 AVA 的百分比变化,Trifecta 比 Inspiris 大(28.7 ± 36.0 vs - 0.8 ± 12.4%)。静息时较小的 AVA 被认为是造成这种情况的原因。同时,在 4D 流磁共振成像中,人工瓣膜节段的 Trifecta 收缩能量损失(97.5 ± 35.9 vs 52.7 ± 25.3 mW)高于 Inspiris。Trifecta 瓣膜的开放在静息状态下受到限制,这可能反映了目前关于瓣膜早期退化需要再次手术的报道。总之,我们观察到 Trifecta 设计可能会因瓣膜应力较大而加速磨损。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信