{"title":"BEAS-Net: A Shape-Prior-Based Deep Convolutional Neural Network for Robust Left Ventricular Segmentation in 2-D Echocardiography","authors":"Somayeh Akbari;Mahdi Tabassian;João Pedrosa;Sandro Queirós;Konstantina Papangelopoulou;Jan D’Hooge","doi":"10.1109/TUFFC.2024.3418030","DOIUrl":null,"url":null,"abstract":"Left ventricle (LV) segmentation of 2-D echocardiography images is an essential step in the analysis of cardiac morphology and function and—more generally—diagnosis of cardiovascular diseases (CVD). Several deep learning (DL) algorithms have recently been proposed for the automatic segmentation of the LV, showing significant performance improvement over the traditional segmentation algorithms. However, unlike the traditional methods, prior information about the segmentation problem, e.g., anatomical shape information, is not usually incorporated for training the DL algorithms. This can degrade the generalization performance of the DL models on unseen images if their characteristics are somewhat different from those of the training images, e.g., low-quality testing images. In this study, a new shape-constrained deep convolutional neural network (CNN)—called B-spline explicit active surface (BEAS)-Net—is introduced for automatic LV segmentation. The BEAS-Net learns how to associate the image features, encoded by its convolutional layers, with anatomical shape-prior information derived by the BEAS algorithm to generate physiologically meaningful segmentation contours when dealing with artifactual or low-quality images. The performance of the proposed network was evaluated using three different in vivo datasets and was compared with a deep segmentation algorithm based on the U-Net model. Both the networks yielded comparable results when tested on images of acceptable quality, but the BEAS-Net outperformed the benchmark DL model on artifactual and low-quality images.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 11","pages":"1565-1576"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10569083/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Left ventricle (LV) segmentation of 2-D echocardiography images is an essential step in the analysis of cardiac morphology and function and—more generally—diagnosis of cardiovascular diseases (CVD). Several deep learning (DL) algorithms have recently been proposed for the automatic segmentation of the LV, showing significant performance improvement over the traditional segmentation algorithms. However, unlike the traditional methods, prior information about the segmentation problem, e.g., anatomical shape information, is not usually incorporated for training the DL algorithms. This can degrade the generalization performance of the DL models on unseen images if their characteristics are somewhat different from those of the training images, e.g., low-quality testing images. In this study, a new shape-constrained deep convolutional neural network (CNN)—called B-spline explicit active surface (BEAS)-Net—is introduced for automatic LV segmentation. The BEAS-Net learns how to associate the image features, encoded by its convolutional layers, with anatomical shape-prior information derived by the BEAS algorithm to generate physiologically meaningful segmentation contours when dealing with artifactual or low-quality images. The performance of the proposed network was evaluated using three different in vivo datasets and was compared with a deep segmentation algorithm based on the U-Net model. Both the networks yielded comparable results when tested on images of acceptable quality, but the BEAS-Net outperformed the benchmark DL model on artifactual and low-quality images.
期刊介绍:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.