Explaining the influence of practice on the grooved pegboard times of older adults: role of force steadiness.

IF 1.7 4区 医学 Q4 NEUROSCIENCES
Experimental Brain Research Pub Date : 2024-08-01 Epub Date: 2024-06-25 DOI:10.1007/s00221-024-06878-9
Sajjad Daneshgar, Taylor Tvrdy, Roger M Enoka
{"title":"Explaining the influence of practice on the grooved pegboard times of older adults: role of force steadiness.","authors":"Sajjad Daneshgar, Taylor Tvrdy, Roger M Enoka","doi":"10.1007/s00221-024-06878-9","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose was to identify the variables that can explain the variance in the grooved pegboard times of older adults categorized as either fast or slow performers. Participants (n = 28; 60-83 years) completed two experimental sessions, before and after 6 practice sessions of the grooved pegboard test. The 2 groups were identified based on average pegboard times during the practice sessions. Average pegboard time during practice was 73 ± 11 s for the fast group and 85 ± 13 s for the slow group. Explanatory variables for the pegboard times before and after practice were the durations of 4 peg-manipulation phases and 12 measures of force steadiness (coefficient of variation [CV] for force) during isometric contractions with the index finger abductor and wrist extensor muscles. Time to complete the grooved pegboard test after practice decreased by 25 ± 11% for the fast group and by 28 ± 10% for the slow group. Multiple regression models explained more of the variance in the pegboard times for the fast group before practice (Adjusted R<sup>2</sup> = 0.85) than after practice (R<sup>2</sup> = 0.51), whereas the variance explained for the slow group was similar before (Adjusted R<sup>2</sup> = 0.67) and after (Adjusted R<sup>2</sup> = 0.64) practice. The explanatory variables differed between before and after practice for the fast group but only slightly for the slow group. These findings indicate that performance-based stratification of older adults can identify unique adjustments in motor function that are independent of chronological age.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-024-06878-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose was to identify the variables that can explain the variance in the grooved pegboard times of older adults categorized as either fast or slow performers. Participants (n = 28; 60-83 years) completed two experimental sessions, before and after 6 practice sessions of the grooved pegboard test. The 2 groups were identified based on average pegboard times during the practice sessions. Average pegboard time during practice was 73 ± 11 s for the fast group and 85 ± 13 s for the slow group. Explanatory variables for the pegboard times before and after practice were the durations of 4 peg-manipulation phases and 12 measures of force steadiness (coefficient of variation [CV] for force) during isometric contractions with the index finger abductor and wrist extensor muscles. Time to complete the grooved pegboard test after practice decreased by 25 ± 11% for the fast group and by 28 ± 10% for the slow group. Multiple regression models explained more of the variance in the pegboard times for the fast group before practice (Adjusted R2 = 0.85) than after practice (R2 = 0.51), whereas the variance explained for the slow group was similar before (Adjusted R2 = 0.67) and after (Adjusted R2 = 0.64) practice. The explanatory variables differed between before and after practice for the fast group but only slightly for the slow group. These findings indicate that performance-based stratification of older adults can identify unique adjustments in motor function that are independent of chronological age.

Abstract Image

解释练习对老年人沟槽钉板时间的影响:力量稳定性的作用。
研究的目的是确定哪些变量可以解释被归类为速度快或速度慢的老年人在凹槽钉板时间上的差异。参与者(n = 28;60-83 岁)在进行 6 次凹槽钉板测试练习之前和之后完成了两次实验。根据练习过程中的平均钉板时间确定两组。快速组在练习过程中的平均钉板时间为 73 ± 11 秒,慢速组为 85 ± 13 秒。练习前后的钉板时间的解释变量是 4 个钉板操作阶段的持续时间以及食指外展肌和腕部伸肌等距收缩时的 12 个力量稳定性测量值(力量变异系数 [CV])。练习后,快速组完成凹槽钉板测试的时间减少了 25 ± 11%,慢速组减少了 28 ± 10%。多元回归模型对快速组在练习前(调整后 R2 = 0.85)比练习后(R2 = 0.51)的钉板时间方差的解释更多,而对慢速组在练习前(调整后 R2 = 0.67)和练习后(调整后 R2 = 0.64)的方差解释相似。快速组的解释变量在练习前和练习后有所不同,但对慢速组来说只是略有不同。这些研究结果表明,对老年人进行基于表现的分层可以发现运动功能的独特调整,而这些调整与实际年龄无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信