White matter organisation of sensorimotor tracts is associated with motor imagery in childhood.

IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY
Brain Structure & Function Pub Date : 2024-09-01 Epub Date: 2024-06-25 DOI:10.1007/s00429-024-02813-4
Mugdha Mukherjee, Christian Hyde, Pamela Barhoun, Kaila M Bianco, Mervyn Singh, Jessica Waugh, Timothy J Silk, Jarrad Ag Lum, Karen Caeyenberghs, Jacqueline Williams, Peter G Enticott, Ian Fuelscher
{"title":"White matter organisation of sensorimotor tracts is associated with motor imagery in childhood.","authors":"Mugdha Mukherjee, Christian Hyde, Pamela Barhoun, Kaila M Bianco, Mervyn Singh, Jessica Waugh, Timothy J Silk, Jarrad Ag Lum, Karen Caeyenberghs, Jacqueline Williams, Peter G Enticott, Ian Fuelscher","doi":"10.1007/s00429-024-02813-4","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the important role of motor imagery (MI) in motor development, our understanding of the contribution of white matter fibre properties to MI performance in childhood remains limited. To provide novel insight into the white matter correlates of MI performance, this study examined the association between white matter fibre properties and motor imagery performance in a sample of typically developing children. High angular diffusion weighted imaging data were collected from 22 typically developing children aged 6-14 years (12 female, M<sub>Age</sub>= 10.56). Implicit motor imagery performance was assessed using a mental hand rotation paradigm. The cerebellar peduncles and the superior longitudinal fasciculus were reconstructed using TractSeg, a semi-automated method. For each tract, white matter microstructure (fibre density, FD) and morphology (fibre bundle cross-section, FC) were estimated using Fixel-Based Analysis. Permutation-based inference testing and partial correlation analyses demonstrated that higher FC in the middle cerebellar peduncles was associated with better MI performance. Tract-based region of interest analyses showed that higher FC in the middle and superior cerebellar peduncles were associated with better MI performance. Results suggest that white matter connectivity along the cerebellar peduncles may facilitate MI performance in childhood. These findings advance our understanding of the neurobiological systems that underlie MI performance in childhood and provide early evidence for the relevance of white matter sensorimotor pathways to internal action representations.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1591-1603"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374871/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-024-02813-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the important role of motor imagery (MI) in motor development, our understanding of the contribution of white matter fibre properties to MI performance in childhood remains limited. To provide novel insight into the white matter correlates of MI performance, this study examined the association between white matter fibre properties and motor imagery performance in a sample of typically developing children. High angular diffusion weighted imaging data were collected from 22 typically developing children aged 6-14 years (12 female, MAge= 10.56). Implicit motor imagery performance was assessed using a mental hand rotation paradigm. The cerebellar peduncles and the superior longitudinal fasciculus were reconstructed using TractSeg, a semi-automated method. For each tract, white matter microstructure (fibre density, FD) and morphology (fibre bundle cross-section, FC) were estimated using Fixel-Based Analysis. Permutation-based inference testing and partial correlation analyses demonstrated that higher FC in the middle cerebellar peduncles was associated with better MI performance. Tract-based region of interest analyses showed that higher FC in the middle and superior cerebellar peduncles were associated with better MI performance. Results suggest that white matter connectivity along the cerebellar peduncles may facilitate MI performance in childhood. These findings advance our understanding of the neurobiological systems that underlie MI performance in childhood and provide early evidence for the relevance of white matter sensorimotor pathways to internal action representations.

Abstract Image

感觉运动束的白质组织与儿童时期的运动想象有关。
尽管运动想象(MI)在运动发育中起着重要作用,但我们对白质纤维特性对儿童运动想象表现的贡献的了解仍然有限。为了提供有关运动想象表现的白质相关性的新见解,本研究对典型发育儿童样本中的白质纤维特性与运动想象表现之间的关联进行了研究。研究收集了 22 名 6-14 岁发育典型儿童(12 名女性,平均年龄为 10.56 岁)的高角度扩散加权成像数据。采用心理手旋转范式对内隐运动想象能力进行了评估。使用半自动方法 TractSeg 重建了小脑脚和上纵筋束。对于每个束,白质微观结构(纤维密度,FD)和形态学(纤维束横截面,FC)均采用基于菲赛尔分析法进行估算。基于换位推理的测试和偏相关分析表明,小脑中支的FC越高,MI表现越好。基于兴趣区的分析表明,小脑中、上 peduncles 的 FC 值越高,MI 表现越好。研究结果表明,沿小脑脚的白质连通性可能有助于儿童期的MI表现。这些研究结果加深了我们对儿童期迷走神经表现的神经生物学系统的理解,并为白质感觉运动通路与内部动作表征的相关性提供了早期证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Structure & Function
Brain Structure & Function 医学-解剖学与形态学
CiteScore
6.00
自引率
6.50%
发文量
168
审稿时长
8 months
期刊介绍: Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信