{"title":"Assignment of the Lassa virus transmembrane domain in the prefusion and postfusion states in detergent micelles","authors":"Patrick M. Keating, Jinwoo Lee","doi":"10.1007/s12104-024-10184-4","DOIUrl":null,"url":null,"abstract":"<div><p>Lassa virus (LASV) is the most prevalent member of the arenavirus family and the causative agent of Lassa fever, a viral hemorrhagic fever. Although there are annual outbreaks in West Africa, and recently isolated cases worldwide, there are no current therapeutics or vaccines. As such, LASV poses a significant global public health threat. One of the key steps in LASV infection is delivering its genetic material by fusing its viral membrane with the host cell membrane. This process is facilitated by significant conformational changes within glycoprotein 2 (GP2), yielding distinct prefusion and postfusion structural states. However, structural information is missing to understand the changes that occur in the transmembrane domain (TM) during the fusion process. Previously, we showed that the TM undergoes pH-dependent structural changes that result in a helical extension. Here, we provide the <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C assignment of the LASV TM backbone in the prefusion and postfusion states. We also provide the <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C assignment of two mutants, G429P and D432P, which prevent this helical extension. These results will help understand the role the TM plays in membrane fusion and can lead to the design of therapeutics against LASV infection.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 2","pages":"165 - 169"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-024-10184-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Lassa virus (LASV) is the most prevalent member of the arenavirus family and the causative agent of Lassa fever, a viral hemorrhagic fever. Although there are annual outbreaks in West Africa, and recently isolated cases worldwide, there are no current therapeutics or vaccines. As such, LASV poses a significant global public health threat. One of the key steps in LASV infection is delivering its genetic material by fusing its viral membrane with the host cell membrane. This process is facilitated by significant conformational changes within glycoprotein 2 (GP2), yielding distinct prefusion and postfusion structural states. However, structural information is missing to understand the changes that occur in the transmembrane domain (TM) during the fusion process. Previously, we showed that the TM undergoes pH-dependent structural changes that result in a helical extension. Here, we provide the 1H, 15N, and 13C assignment of the LASV TM backbone in the prefusion and postfusion states. We also provide the 1H, 15N, and 13C assignment of two mutants, G429P and D432P, which prevent this helical extension. These results will help understand the role the TM plays in membrane fusion and can lead to the design of therapeutics against LASV infection.
期刊介绍:
Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties.
Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.