Stochastic modeling of stationary scalar Gaussian processes in continuous time from autocorrelation data

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Martin Hanke
{"title":"Stochastic modeling of stationary scalar Gaussian processes in continuous time from autocorrelation data","authors":"Martin Hanke","doi":"10.1007/s10444-024-10150-7","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the problem of constructing a vector-valued linear Markov process in continuous time, such that its first coordinate is in good agreement with given samples of the scalar autocorrelation function of an otherwise unknown stationary Gaussian process. This problem has intimate connections to the computation of a passive reduced model of a deterministic time-invariant linear system from given output data in the time domain. We construct the stochastic model in two steps. First, we employ the AAA algorithm to determine a rational function which interpolates the <i>z</i>-transform of the discrete data on the unit circle and use this function to assign the poles of the transfer function of the reduced model. Second, we choose the associated residues as the minimizers of a linear inequality constrained least squares problem which ensures the positivity of the transfer function’s real part for large frequencies. We apply this method to compute extended Markov models for stochastic processes obtained from generalized Langevin dynamics in statistical physics. Numerical examples demonstrate that the algorithm succeeds in determining passive reduced models and that the associated Markov processes provide an excellent match of the given data.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10150-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10150-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of constructing a vector-valued linear Markov process in continuous time, such that its first coordinate is in good agreement with given samples of the scalar autocorrelation function of an otherwise unknown stationary Gaussian process. This problem has intimate connections to the computation of a passive reduced model of a deterministic time-invariant linear system from given output data in the time domain. We construct the stochastic model in two steps. First, we employ the AAA algorithm to determine a rational function which interpolates the z-transform of the discrete data on the unit circle and use this function to assign the poles of the transfer function of the reduced model. Second, we choose the associated residues as the minimizers of a linear inequality constrained least squares problem which ensures the positivity of the transfer function’s real part for large frequencies. We apply this method to compute extended Markov models for stochastic processes obtained from generalized Langevin dynamics in statistical physics. Numerical examples demonstrate that the algorithm succeeds in determining passive reduced models and that the associated Markov processes provide an excellent match of the given data.

根据自相关数据建立连续时间内静止标量高斯过程的随机模型
我们考虑的问题是在连续时间内构建一个矢量值线性马尔可夫过程,使其第一坐标与一个未知静态高斯过程的标量自相关函数的给定样本保持良好一致。这个问题与根据给定时域输出数据计算确定性时不变线性系统的被动缩小模型有着密切联系。我们分两步构建随机模型。首先,我们采用 AAA 算法确定一个有理函数,该函数对单位圆上离散数据的 Z 变换进行插值,并利用该函数分配简化模型传递函数的极点。其次,我们选择相关的残差作为线性不等式约束最小二乘问题的最小值,以确保传递函数的实部在大频率下的正向性。我们将这种方法应用于计算统计物理中广义朗之文动力学随机过程的扩展马尔可夫模型。数值示例表明,该算法成功地确定了被动简化模型,而且相关的马尔可夫过程与给定数据非常匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信