Shafiq Ur Rehman, Naeem Sadiq, Iqbal Tariq, Mahwish Mobeen Khan, Muhammad Mustaqeem Zahid, Ahmed Ali Rajput, Zaheer Uddin
{"title":"A new mathematical technique and its Python program to assess wind potential","authors":"Shafiq Ur Rehman, Naeem Sadiq, Iqbal Tariq, Mahwish Mobeen Khan, Muhammad Mustaqeem Zahid, Ahmed Ali Rajput, Zaheer Uddin","doi":"10.1186/s43088-024-00510-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>A new approach based on the Newton–Gauss method is used to find the Weibull parameters.</p><h3>Results</h3><p>A Python program was developed to employ the Newton–Gauss method. It is implemented to find Weibull parameters and wind potential of Pakistan’s eight cities (Hyderabad, Khuzdar, Multan, Quetta, Bahawalpur, Islamabad, Lahore, and Peshawar). Wind speed data recorded at an interval of ten minutes for 2016 is used to implement a Python program to calculate wind potential. To compare the values of the parameters, five known methods, the empirical method, method of moments, energy pattern factor method, maximum likelihood method, and modified maximum likelihood method, were also used to model and determine the wind potential. The root mean square error, mean absolute error, coefficient of determination, and Akaike information criterion were calculated to compare values of wind parameters and average wind speed. The correlation between recorded and modeled Weibull pdf was almost 99% for each city.</p><h3>Conclusions</h3><p>The new method only caters to those wind speeds that contribute to the wind potential; therefore, the average value of the wind speed is the least in the case of the new method. The maximum wind potential was observed for Hyderabad.</p></div>","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"13 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00510-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beni-Suef University Journal of Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43088-024-00510-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
A new approach based on the Newton–Gauss method is used to find the Weibull parameters.
Results
A Python program was developed to employ the Newton–Gauss method. It is implemented to find Weibull parameters and wind potential of Pakistan’s eight cities (Hyderabad, Khuzdar, Multan, Quetta, Bahawalpur, Islamabad, Lahore, and Peshawar). Wind speed data recorded at an interval of ten minutes for 2016 is used to implement a Python program to calculate wind potential. To compare the values of the parameters, five known methods, the empirical method, method of moments, energy pattern factor method, maximum likelihood method, and modified maximum likelihood method, were also used to model and determine the wind potential. The root mean square error, mean absolute error, coefficient of determination, and Akaike information criterion were calculated to compare values of wind parameters and average wind speed. The correlation between recorded and modeled Weibull pdf was almost 99% for each city.
Conclusions
The new method only caters to those wind speeds that contribute to the wind potential; therefore, the average value of the wind speed is the least in the case of the new method. The maximum wind potential was observed for Hyderabad.
期刊介绍:
Beni-Suef University Journal of Basic and Applied Sciences (BJBAS) is a peer-reviewed, open-access journal. This journal welcomes submissions of original research, literature reviews, and editorials in its respected fields of fundamental science, applied science (with a particular focus on the fields of applied nanotechnology and biotechnology), medical sciences, pharmaceutical sciences, and engineering. The multidisciplinary aspects of the journal encourage global collaboration between researchers in multiple fields and provide cross-disciplinary dissemination of findings.