Mohamed Ferioun , Said Bouhraoua , Douae Belahcen , Ilham Zouitane , Nassira Srhiouar , Said Louahlia , Naïma El Ghachtouli
{"title":"PGPR consortia enhance growth and yield in barley cultivars subjected to severe drought stress and subsequent recovery","authors":"Mohamed Ferioun , Said Bouhraoua , Douae Belahcen , Ilham Zouitane , Nassira Srhiouar , Said Louahlia , Naïma El Ghachtouli","doi":"10.1016/j.rhisph.2024.100926","DOIUrl":null,"url":null,"abstract":"<div><p>With the continuous increase of land areas affected by drought due to climate change, barley, a cereal globally consumed by the human population, faces significant challenges from drought stress. The current study aims to showcase the effectiveness of two consortia based on Plant Growth-Promoting Rhizobacteria (PGPR) strains in promoting plant growth and recovery in post-drought conditions of drought-sensitive and tolerant barley cultivars. Inoculations with Consortium 1 and 2 enhance barley plant tolerance to drought stress by impacting relative water content, SPAD index, and Fv/Fm while decreasing electrolyte leakage. Similarly, in biochemical traits, both consortia influence proline, total soluble sugars, H<sub>2</sub>O<sub>2</sub>, and MDA contents, as well as catalase and ascorbate peroxidase activities. Regarding agro-morphological traits, the consortia contribute to increased root and vegetative shoot dry weights, along with a positive effect on grain yield and thousand-grain weight, achieving values equivalent to unstressed plants. The highest important effect in recovered plants was recorded in the case of the tolerant cultivar inoculated with Consortium 1, in most of the traits studied, there was no significant difference recorded between unstressed and recovered barley plants. Consortium 1 and Consortium 2 improve the tolerance of both sensitive and tolerant barley cultivars against drought, aiding recovered plants in regaining physiological status equivalent to unstressed ones.</p></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"31 ","pages":"Article 100926"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rhizosphere","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452219824000818","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
With the continuous increase of land areas affected by drought due to climate change, barley, a cereal globally consumed by the human population, faces significant challenges from drought stress. The current study aims to showcase the effectiveness of two consortia based on Plant Growth-Promoting Rhizobacteria (PGPR) strains in promoting plant growth and recovery in post-drought conditions of drought-sensitive and tolerant barley cultivars. Inoculations with Consortium 1 and 2 enhance barley plant tolerance to drought stress by impacting relative water content, SPAD index, and Fv/Fm while decreasing electrolyte leakage. Similarly, in biochemical traits, both consortia influence proline, total soluble sugars, H2O2, and MDA contents, as well as catalase and ascorbate peroxidase activities. Regarding agro-morphological traits, the consortia contribute to increased root and vegetative shoot dry weights, along with a positive effect on grain yield and thousand-grain weight, achieving values equivalent to unstressed plants. The highest important effect in recovered plants was recorded in the case of the tolerant cultivar inoculated with Consortium 1, in most of the traits studied, there was no significant difference recorded between unstressed and recovered barley plants. Consortium 1 and Consortium 2 improve the tolerance of both sensitive and tolerant barley cultivars against drought, aiding recovered plants in regaining physiological status equivalent to unstressed ones.
RhizosphereAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
5.70
自引率
8.10%
发文量
155
审稿时长
29 days
期刊介绍:
Rhizosphere aims to advance the frontier of our understanding of plant-soil interactions. Rhizosphere is a multidisciplinary journal that publishes research on the interactions between plant roots, soil organisms, nutrients, and water. Except carbon fixation by photosynthesis, plants obtain all other elements primarily from soil through roots.
We are beginning to understand how communications at the rhizosphere, with soil organisms and other plant species, affect root exudates and nutrient uptake. This rapidly evolving subject utilizes molecular biology and genomic tools, food web or community structure manipulations, high performance liquid chromatography, isotopic analysis, diverse spectroscopic analytics, tomography and other microscopy, complex statistical and modeling tools.