{"title":"Machine learning attack detection based-on stochastic classifier methods for enhancing of routing security in wireless sensor networks","authors":"Anselme R. Affane M., Hassan Satori","doi":"10.1016/j.adhoc.2024.103581","DOIUrl":null,"url":null,"abstract":"<div><p>Wireless Sensor Networks (WSNs) are vulnerable to attacks during data transmission, and many techniques have been proposed to detect and secure routing data. In this paper, we introduce a novel stochastic predictive machine learning approach designed to discern untrustworthy events and unreliable routing attributes, aiming to establish an artificial intelligence-based attack detection system for WSNs. Our methodology leverages real-time analysis of the features of simulated WSN routing data. By integrating Hidden Markov Models (HMM) with Gaussian Mixture Models (GMM), we develop a robust classification framework. This framework effectively identifies outliers, pinpoints malicious network behaviors from their origins, and categorizes them as either trusted or untrusted network activities. In addition, dimensionality reduction techniques are used to improve interpretability, reduce computation and processing time, extract uncorrelated features from network data, and optimize performances. The main advantage of our approach is to establish an efficient stochastic machine learning method capable of analyzing and filtering WSN traffic to prevent suspicious and unsafe data, reduce the large dissimilarity in the collected routing features, and rapidly detect attacks before they occur. In this work, we exploit a well-tuned data set that provides a lot of routing information without losing any data. The experimental results show that the proposed stochastic attack detection system can effectively identify and categorize anomalies in wireless sensor networks with high accuracy. The classification rates of the system were found to be around 83.65%, 84.94% and 94.55%, which is significantly better than the existing classification approaches. Furthermore, the proposed system showed a positive prediction value of 11.84% higher than the existing approaches.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"163 ","pages":"Article 103581"},"PeriodicalIF":4.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524001926","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless Sensor Networks (WSNs) are vulnerable to attacks during data transmission, and many techniques have been proposed to detect and secure routing data. In this paper, we introduce a novel stochastic predictive machine learning approach designed to discern untrustworthy events and unreliable routing attributes, aiming to establish an artificial intelligence-based attack detection system for WSNs. Our methodology leverages real-time analysis of the features of simulated WSN routing data. By integrating Hidden Markov Models (HMM) with Gaussian Mixture Models (GMM), we develop a robust classification framework. This framework effectively identifies outliers, pinpoints malicious network behaviors from their origins, and categorizes them as either trusted or untrusted network activities. In addition, dimensionality reduction techniques are used to improve interpretability, reduce computation and processing time, extract uncorrelated features from network data, and optimize performances. The main advantage of our approach is to establish an efficient stochastic machine learning method capable of analyzing and filtering WSN traffic to prevent suspicious and unsafe data, reduce the large dissimilarity in the collected routing features, and rapidly detect attacks before they occur. In this work, we exploit a well-tuned data set that provides a lot of routing information without losing any data. The experimental results show that the proposed stochastic attack detection system can effectively identify and categorize anomalies in wireless sensor networks with high accuracy. The classification rates of the system were found to be around 83.65%, 84.94% and 94.55%, which is significantly better than the existing classification approaches. Furthermore, the proposed system showed a positive prediction value of 11.84% higher than the existing approaches.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.