{"title":"Two problems on subset sums","authors":"Xing-Wang Jiang , Bing-Ling Wu","doi":"10.1016/j.ejc.2024.104016","DOIUrl":null,"url":null,"abstract":"<div><p>For a set <span><math><mi>A</mi></math></span> of positive integers, let <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span> denote the set of all finite subset sums of <span><math><mi>A</mi></math></span>. In this paper, we completely solve a problem of Chen and Wu by proving that if <span><math><mrow><mi>B</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mspace></mspace><mo>}</mo></mrow></mrow></math></span> is a sequence of integers with <span><math><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><mn>11</mn></mrow></math></span>, <span><math><mrow><mn>3</mn><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>5</mn><mo>≤</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mn>4</mn><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, <span><math><mrow><mn>3</mn><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mn>2</mn><mo>≤</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>≤</mo><mn>3</mn><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mn>3</mn><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>≤</mo><mn>3</mn><msub><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msub><mspace></mspace><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>, then there exists a set of positive integers <span><math><mi>A</mi></math></span> for which <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>=</mo><mi>N</mi><mo>∖</mo><mi>B</mi></mrow></math></span>. We also partially answer a problem of Wu by determining the structure of <span><math><mrow><mi>B</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mspace></mspace><mo>}</mo></mrow></mrow></math></span> with <span><math><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>></mo><mn>10</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>></mo><mn>3</mn><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>4</mn></mrow></math></span>, for which there exists a set of positive integers <span><math><mi>A</mi></math></span> such that <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>A</mi><mo>∩</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>]</mo></mrow><mo>)</mo></mrow><mo>=</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>]</mo></mrow><mo>∖</mo><mrow><mo>{</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mn>2</mn><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>:</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi><mo>}</mo></mrow><mspace></mspace><mrow><mo>(</mo><mi>k</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019566982400101X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a set of positive integers, let denote the set of all finite subset sums of . In this paper, we completely solve a problem of Chen and Wu by proving that if is a sequence of integers with , , and , then there exists a set of positive integers for which . We also partially answer a problem of Wu by determining the structure of with and , for which there exists a set of positive integers such that .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.