Broadening the application of Yarrowia lipolytica synthetic biology tools to explore the potential of Yarrowia clade diversity.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Young-Kyoung Park, Tristan Rossignol
{"title":"Broadening the application of <i>Yarrowia lipolytica</i> synthetic biology tools to explore the potential of <i>Yarrowia</i> clade diversity.","authors":"Young-Kyoung Park, Tristan Rossignol","doi":"10.1099/mic.0.001472","DOIUrl":null,"url":null,"abstract":"<p><p>Yeasts have established themselves as prominent microbial cell factories, and the availability of synthetic biology tools has led to breakthroughs in the rapid development of industrial chassis strains. The selection of a suitable microbial host is critical in metabolic engineering applications, but it has been largely limited to a few well-defined strains. However, there is growing consideration for evaluating strain diversity, as a wide range of specific traits and phenotypes have been reported even within a specific yeast genus or species. Moreover, with the advent of synthetic biology tools, non-type strains can now be easily and swiftly reshaped. The yeast <i>Yarrowia lipolytica</i> has been extensively studied for various applications such as fuels, chemicals, and food. Additionally, other members of the <i>Yarrowia</i> clade are currently being evaluated for their industrial potential. In this study, we demonstrate the versatility of synthetic biology tools originally developed for <i>Y. lipolytica</i> by repurposing them for engineering other yeasts belonging to the <i>Yarrowia</i> clade. Leveraging the Golden Gate <i>Y. lipolytica</i> tool kit, we successfully expressed fluorescent proteins as well as the carotenoid pathway in at least five members of the clade, serving as proof of concept. This research lays the foundation for conducting more comprehensive investigations into the uncharacterized strains within the <i>Yarrowia</i> clade and exploring their potential applications in biotechnology.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261841/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Yeasts have established themselves as prominent microbial cell factories, and the availability of synthetic biology tools has led to breakthroughs in the rapid development of industrial chassis strains. The selection of a suitable microbial host is critical in metabolic engineering applications, but it has been largely limited to a few well-defined strains. However, there is growing consideration for evaluating strain diversity, as a wide range of specific traits and phenotypes have been reported even within a specific yeast genus or species. Moreover, with the advent of synthetic biology tools, non-type strains can now be easily and swiftly reshaped. The yeast Yarrowia lipolytica has been extensively studied for various applications such as fuels, chemicals, and food. Additionally, other members of the Yarrowia clade are currently being evaluated for their industrial potential. In this study, we demonstrate the versatility of synthetic biology tools originally developed for Y. lipolytica by repurposing them for engineering other yeasts belonging to the Yarrowia clade. Leveraging the Golden Gate Y. lipolytica tool kit, we successfully expressed fluorescent proteins as well as the carotenoid pathway in at least five members of the clade, serving as proof of concept. This research lays the foundation for conducting more comprehensive investigations into the uncharacterized strains within the Yarrowia clade and exploring their potential applications in biotechnology.

拓宽脂肪亚罗菌合成生物学工具的应用范围,探索亚罗菌支系多样性的潜力。
酵母已成为重要的微生物细胞工厂,而合成生物学工具的可用性也为快速开发工业基质菌株带来了突破性进展。在代谢工程应用中,选择合适的微生物宿主至关重要,但这在很大程度上仅限于少数明确定义的菌株。然而,人们越来越多地考虑对菌株多样性进行评估,因为即使在一个特定的酵母属或种内,也有各种特定性状和表型的报道。此外,随着合成生物学工具的出现,非类型菌株现在可以轻松快速地重塑。人们对脂肪分解酵母(Yarrowia lipolytica)进行了广泛的研究,以用于燃料、化学品和食品等各种用途。此外,目前还在对亚罗酵母支系的其他成员进行工业潜力评估。在本研究中,我们展示了最初为脂肪溶解酵母开发的合成生物学工具的多功能性,将其重新用于工程化其他属于亚罗酵母支系的酵母。利用金门溶脂酵母工具包,我们成功地在该支系至少五个成员中表达了荧光蛋白和类胡萝卜素途径,作为概念验证。这项研究为对亚罗菌支系中尚未定性的菌株进行更全面的调查以及探索它们在生物技术中的潜在应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信