{"title":"Collagen: The superior material for full-thickness oral mucosa tissue engineering","authors":"","doi":"10.1016/j.job.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><span>Tissue engineering has significantly progressed in developing full-thickness oral mucosa<span> constructs designed to replicate the natural oral mucosa. These constructs serve as valuable </span></span><em>in vitro</em><span> models for biocompatibility<span><span> testing and oral disease modeling and hold clinical potential for replacing damaged or lost oral soft tissue. However, one of the major challenges in tissue engineering of the oral mucosa is the identification of an appropriate scaffold with optimal porosity, interconnected porous networks, </span>biodegradability<span><span>, and biocompatibility. These characteristics facilitate cell migration, nutrient delivery, and </span>vascularization. Various biomaterials have been investigated for constructing tissue-engineered oral mucosa models; collagen has demonstrated superior outcomes compared with other materials.</span></span></span></p></div><div><h3>Highlight</h3><p><span>This review discusses the different types of tissue-engineered oral mucosa developed using various materials and includes articles published between January 2000 and December 2022 in PubMed and Google Scholar. The review focuses on the superiority of collagen-based scaffolds for tissue engineering of oral mucosa, explores </span><em>in vitro</em> applications, and discusses potential clinical applications.</p></div><div><h3>Conclusion</h3><p>Among the various scaffold materials used for engineering the connective tissue of the oral mucosa, collagen-based scaffolds possess excellent biological properties, offering high-quality oral mucosa constructs and high resemblance to the native human oral mucosa in terms of histology and expression of various differentiation markers.</p></div>","PeriodicalId":45851,"journal":{"name":"Journal of Oral Biosciences","volume":"66 3","pages":"Pages 511-518"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1349007924001439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Tissue engineering has significantly progressed in developing full-thickness oral mucosa constructs designed to replicate the natural oral mucosa. These constructs serve as valuable in vitro models for biocompatibility testing and oral disease modeling and hold clinical potential for replacing damaged or lost oral soft tissue. However, one of the major challenges in tissue engineering of the oral mucosa is the identification of an appropriate scaffold with optimal porosity, interconnected porous networks, biodegradability, and biocompatibility. These characteristics facilitate cell migration, nutrient delivery, and vascularization. Various biomaterials have been investigated for constructing tissue-engineered oral mucosa models; collagen has demonstrated superior outcomes compared with other materials.
Highlight
This review discusses the different types of tissue-engineered oral mucosa developed using various materials and includes articles published between January 2000 and December 2022 in PubMed and Google Scholar. The review focuses on the superiority of collagen-based scaffolds for tissue engineering of oral mucosa, explores in vitro applications, and discusses potential clinical applications.
Conclusion
Among the various scaffold materials used for engineering the connective tissue of the oral mucosa, collagen-based scaffolds possess excellent biological properties, offering high-quality oral mucosa constructs and high resemblance to the native human oral mucosa in terms of histology and expression of various differentiation markers.