Subgroup analyses and patterns of multiple sclerosis health service utilisation: A cluster analysis.

IF 2.5 Q2 CLINICAL NEUROLOGY
Lara Marleen Fricke, Kathrin Krüger, Corinna Trebst, Anna Levke Brütt, Elise-Marie Dilger, Kerstin Eichstädt, Peter Flachenecker, Anja Grau, Melissa Hemmerling, Dyon Hoekstra, Kristina Schaubert, Alexander Stahmann, Jona Theodor Stahmeyer, Annett Thiele, Uwe Klaus Zettl, Fedor Heidenreich, Christian Krauth
{"title":"Subgroup analyses and patterns of multiple sclerosis health service utilisation: A cluster analysis.","authors":"Lara Marleen Fricke, Kathrin Krüger, Corinna Trebst, Anna Levke Brütt, Elise-Marie Dilger, Kerstin Eichstädt, Peter Flachenecker, Anja Grau, Melissa Hemmerling, Dyon Hoekstra, Kristina Schaubert, Alexander Stahmann, Jona Theodor Stahmeyer, Annett Thiele, Uwe Klaus Zettl, Fedor Heidenreich, Christian Krauth","doi":"10.1177/20552173241260151","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Previous investigations of multiple sclerosis (MS)-related healthcare have focused on utilisation of specific individual health services (e.g. hospital care, office-based neurologists) by people with MS (PwMS). Meanwhile, little is known about possible patterns of utilisation across health services and their potential differences across patient characteristics.</p><p><strong>Objective: </strong>To comprehensively analyse and identify patterns of MS-related health service utilisation and detect patient characteristics explaining such patterns.</p><p><strong>Methods: </strong>In 2021, we invited all PwMS insured by the largest insurance company in Lower Saxony, Germany, to take part in an online survey. We merged respondents' survey and health insurance claims data. We analysed MS-related health service utilisation and defined individual characteristics for subgroup analyses based on Andersen's Behavioural Model. We executed non-parametric missing value imputation and conducted hierarchical clustering to find patterns in health service utilisation.</p><p><strong>Results: </strong>Of 6928 PwMS, 1935 responded to our survey and 1803 were included in the cluster analysis. We identified four distinct health service utilisation clusters: (1) regular users (n = 1130), (2) assistive care users (n = 443), (3) low users (n = 195) and (4) special services users (n = 35). Clusters differ by patient characteristics (e.g. age, impairment).</p><p><strong>Conclusion: </strong>Our findings highlight the complexity of MS-related health service utilisation and provide relevant stakeholders with information allowing them to tailor healthcare planning according to utilisation patterns.</p>","PeriodicalId":18961,"journal":{"name":"Multiple Sclerosis Journal - Experimental, Translational and Clinical","volume":"10 2","pages":"20552173241260151"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191614/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiple Sclerosis Journal - Experimental, Translational and Clinical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20552173241260151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Previous investigations of multiple sclerosis (MS)-related healthcare have focused on utilisation of specific individual health services (e.g. hospital care, office-based neurologists) by people with MS (PwMS). Meanwhile, little is known about possible patterns of utilisation across health services and their potential differences across patient characteristics.

Objective: To comprehensively analyse and identify patterns of MS-related health service utilisation and detect patient characteristics explaining such patterns.

Methods: In 2021, we invited all PwMS insured by the largest insurance company in Lower Saxony, Germany, to take part in an online survey. We merged respondents' survey and health insurance claims data. We analysed MS-related health service utilisation and defined individual characteristics for subgroup analyses based on Andersen's Behavioural Model. We executed non-parametric missing value imputation and conducted hierarchical clustering to find patterns in health service utilisation.

Results: Of 6928 PwMS, 1935 responded to our survey and 1803 were included in the cluster analysis. We identified four distinct health service utilisation clusters: (1) regular users (n = 1130), (2) assistive care users (n = 443), (3) low users (n = 195) and (4) special services users (n = 35). Clusters differ by patient characteristics (e.g. age, impairment).

Conclusion: Our findings highlight the complexity of MS-related health service utilisation and provide relevant stakeholders with information allowing them to tailor healthcare planning according to utilisation patterns.

多发性硬化症医疗服务利用的分组分析和模式:聚类分析。
背景:以往对多发性硬化症(MS)相关医疗服务的调查主要集中在多发性硬化症患者(PwMS)对特定医疗服务(如医院护理、办公室神经科医生)的使用情况。与此同时,人们对各种医疗服务的可能使用模式以及不同患者特征之间的潜在差异知之甚少:全面分析和识别多发性硬化症相关医疗服务的使用模式,并检测可解释此类模式的患者特征:2021 年,我们邀请德国下萨克森州最大保险公司投保的所有 PwMS 参与在线调查。我们合并了受访者的调查数据和医疗保险理赔数据。我们分析了多发性硬化症相关医疗服务的使用情况,并根据安德森行为模型定义了用于亚组分析的个体特征。我们执行了非参数缺失值估算,并进行了分层聚类,以发现医疗服务使用的模式:在 6928 名妇女中,有 1935 名回答了我们的调查,其中 1803 名被纳入聚类分析。我们确定了四个不同的医疗服务使用群组:(1)常规用户(n = 1130),(2)辅助护理用户(n = 443),(3)低用户(n = 195)和(4)特殊服务用户(n = 35)。患者特征(如年龄、损伤)不同,群组也不同:我们的研究结果突显了多发性硬化症相关医疗服务使用情况的复杂性,并为相关利益方提供了信息,使他们能够根据使用模式制定医疗保健规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
54
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信