Yong-Qing Yang, Min Zhang, Qi Hua, Rui-Jie Ma, Xiao-Yan Wang, Hong-Jie Yuan, Ming-Jiu Luo, Jing-He Tan
{"title":"Role and action mechanisms of tPA in CRH-induced apoptosis of mouse oviductal epithelial and mural granulosa cells.","authors":"Yong-Qing Yang, Min Zhang, Qi Hua, Rui-Jie Ma, Xiao-Yan Wang, Hong-Jie Yuan, Ming-Jiu Luo, Jing-He Tan","doi":"10.1262/jrd.2024-028","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how stress hormones induce apoptosis in oviductal epithelial cells (OECs) and mural granulosa cells (MGCs) can reveal the mechanisms by which female stress impairs embryonic development and oocyte competence. A recent study showed that tissue plasminogen activator (tPA) ameliorates corticosterone-induced apoptosis in MGCs and OECs by acting on its receptors low-density lipoprotein receptor-related protein 1 (LRP1) and Annexin A2 (ANXA2), respectively. However, whether tPA is involved in corticotropin-releasing hormone (CRH)-induced apoptosis and whether it uses the same or different receptors to inhibit apoptosis induced by different hormones in the same cell type remains unknown. This study showed that CRH triggered apoptosis in both OECs and MGCs and significantly downregulated tPA expression. Moreover, tPA inhibits CRH-induced apoptosis by acting on ANXA2 in both OECs and MGCs. While ANXA2 inhibits apoptosis via phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling, LRP1 reduces apoptosis via mitogen-activated protein kinase (MAPK) signaling. Thus, tPA used the same receptor to inhibit CRH-induced apoptosis in both OECs and MGCs, however used different receptors to inhibit corticosterone-induced apoptosis in MGCs and OECs. These data helps understand the mechanism by which female stress impairs embryo/oocyte competence and proapoptotic factors trigger apoptosis in different cell types.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1262/jrd.2024-028","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how stress hormones induce apoptosis in oviductal epithelial cells (OECs) and mural granulosa cells (MGCs) can reveal the mechanisms by which female stress impairs embryonic development and oocyte competence. A recent study showed that tissue plasminogen activator (tPA) ameliorates corticosterone-induced apoptosis in MGCs and OECs by acting on its receptors low-density lipoprotein receptor-related protein 1 (LRP1) and Annexin A2 (ANXA2), respectively. However, whether tPA is involved in corticotropin-releasing hormone (CRH)-induced apoptosis and whether it uses the same or different receptors to inhibit apoptosis induced by different hormones in the same cell type remains unknown. This study showed that CRH triggered apoptosis in both OECs and MGCs and significantly downregulated tPA expression. Moreover, tPA inhibits CRH-induced apoptosis by acting on ANXA2 in both OECs and MGCs. While ANXA2 inhibits apoptosis via phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling, LRP1 reduces apoptosis via mitogen-activated protein kinase (MAPK) signaling. Thus, tPA used the same receptor to inhibit CRH-induced apoptosis in both OECs and MGCs, however used different receptors to inhibit corticosterone-induced apoptosis in MGCs and OECs. These data helps understand the mechanism by which female stress impairs embryo/oocyte competence and proapoptotic factors trigger apoptosis in different cell types.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.