Jaka Potočnik, Edel Thomas, Aonghus Lawlor, Dearbhla Kearney, Eric J Heffernan, Ronan P Killeen, Shane J Foley
{"title":"Machine learning and deep learning for classifying the justification of brain CT referrals.","authors":"Jaka Potočnik, Edel Thomas, Aonghus Lawlor, Dearbhla Kearney, Eric J Heffernan, Ronan P Killeen, Shane J Foley","doi":"10.1007/s00330-024-10851-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To train the machine and deep learning models to automate the justification analysis of radiology referrals in accordance with iGuide categorisation, and to determine if prediction models can generalise across multiple clinical sites and outperform human experts.</p><p><strong>Methods: </strong>Adult brain computed tomography (CT) referrals from scans performed in three CT centres in Ireland in 2020 and 2021 were retrospectively collected. Two radiographers analysed the justification of 3000 randomly selected referrals using iGuide, with two consultant radiologists analysing the referrals with disagreement. Insufficient or duplicate referrals were discarded. The inter-rater agreement among radiographers and consultants was computed. A random split (4:1) was performed to apply machine learning (ML) and deep learning (DL) techniques to unstructured clinical indications to automate retrospective justification auditing with multi-class classification. The accuracy and macro-averaged F1 score of the best-performing classifier of each type on the training set were computed on the test set.</p><p><strong>Results: </strong>42 referrals were ignored. 1909 (64.5%) referrals were justified, 811 (27.4%) were potentially justified, and 238 (8.1%) were unjustified. The agreement between radiographers (κ = 0.268) was lower than radiologists (κ = 0.460). The best-performing ML model was the bag-of-words-based gradient-boosting classifier achieving a 94.4% accuracy and a macro F1 of 0.94. DL models were inferior, with bi-directional long short-term memory achieving 92.3% accuracy, a macro F1 of 0.92, and outperforming multilayer perceptrons.</p><p><strong>Conclusion: </strong>Interpreting unstructured clinical indications is challenging necessitating clinical decision support. ML and DL can generalise across multiple clinical sites, outperform human experts, and be used as an artificial intelligence-based iGuide interpreter when retrospectively vetting radiology referrals.</p><p><strong>Clinical relevance statement: </strong>Healthcare vendors and clinical sites should consider developing and utilising artificial intelligence-enabled systems for justifying medical exposures. This would enable better implementation of imaging referral guidelines in clinical practices and reduce population dose burden, CT waiting lists, and wasteful use of resources.</p><p><strong>Key points: </strong>Significant variations exist among human experts in interpreting unstructured clinical indications/patient presentations. Machine and deep learning can automate the justification analysis of radiology referrals according to iGuide categorisation. Machine and deep learning can improve retrospective and prospective justification auditing for better implementation of imaging referral guidelines.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":"7944-7952"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557633/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-024-10851-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To train the machine and deep learning models to automate the justification analysis of radiology referrals in accordance with iGuide categorisation, and to determine if prediction models can generalise across multiple clinical sites and outperform human experts.
Methods: Adult brain computed tomography (CT) referrals from scans performed in three CT centres in Ireland in 2020 and 2021 were retrospectively collected. Two radiographers analysed the justification of 3000 randomly selected referrals using iGuide, with two consultant radiologists analysing the referrals with disagreement. Insufficient or duplicate referrals were discarded. The inter-rater agreement among radiographers and consultants was computed. A random split (4:1) was performed to apply machine learning (ML) and deep learning (DL) techniques to unstructured clinical indications to automate retrospective justification auditing with multi-class classification. The accuracy and macro-averaged F1 score of the best-performing classifier of each type on the training set were computed on the test set.
Results: 42 referrals were ignored. 1909 (64.5%) referrals were justified, 811 (27.4%) were potentially justified, and 238 (8.1%) were unjustified. The agreement between radiographers (κ = 0.268) was lower than radiologists (κ = 0.460). The best-performing ML model was the bag-of-words-based gradient-boosting classifier achieving a 94.4% accuracy and a macro F1 of 0.94. DL models were inferior, with bi-directional long short-term memory achieving 92.3% accuracy, a macro F1 of 0.92, and outperforming multilayer perceptrons.
Conclusion: Interpreting unstructured clinical indications is challenging necessitating clinical decision support. ML and DL can generalise across multiple clinical sites, outperform human experts, and be used as an artificial intelligence-based iGuide interpreter when retrospectively vetting radiology referrals.
Clinical relevance statement: Healthcare vendors and clinical sites should consider developing and utilising artificial intelligence-enabled systems for justifying medical exposures. This would enable better implementation of imaging referral guidelines in clinical practices and reduce population dose burden, CT waiting lists, and wasteful use of resources.
Key points: Significant variations exist among human experts in interpreting unstructured clinical indications/patient presentations. Machine and deep learning can automate the justification analysis of radiology referrals according to iGuide categorisation. Machine and deep learning can improve retrospective and prospective justification auditing for better implementation of imaging referral guidelines.
期刊介绍:
European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field.
This is the Journal of the European Society of Radiology, and the official journal of a number of societies.
From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.