{"title":"3D Nanolithography via Holographic Multi-Focus Metalens","authors":"Xinger Wang, Xuhao Fan, Yuncheng Liu, Ke Xu, Yining Zhou, Zexu Zhang, Fayu Chen, Xuan Yu, Leimin Deng, Hui Gao, Wei Xiong","doi":"10.1002/lpor.202400181","DOIUrl":null,"url":null,"abstract":"<p>3D nanolithography based on two-photon polymerization (TPP) allows for the high-precision fabrication of nearly arbitrary 3D micro/nanostructures, finding extensive applications in areas such as micro-optics, micro-mechanics, and biomedicine. However, the large size, complexity of optical systems, and high costs have significantly constrained the widespread adoption of 3D nanolithography technology in both scientific research and industry. In this study, a metasurface is introduced, for the first time, into 3D nanolithography resulting in the construction of a miniaturized and simplified TPP system that achieved efficient multi-focus parallel processing with high uniformity. A microlens array is fabricated, showcasing the system's application capacity to generate an array of devices with high consistency and quality. It is believed that the utilization of metasurface devices will provide a novel TPP operating platform, enabling richer and more flexible printing functionalities while maintaining system miniaturization and low cost.</p>","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"18 11","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202400181","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
3D nanolithography based on two-photon polymerization (TPP) allows for the high-precision fabrication of nearly arbitrary 3D micro/nanostructures, finding extensive applications in areas such as micro-optics, micro-mechanics, and biomedicine. However, the large size, complexity of optical systems, and high costs have significantly constrained the widespread adoption of 3D nanolithography technology in both scientific research and industry. In this study, a metasurface is introduced, for the first time, into 3D nanolithography resulting in the construction of a miniaturized and simplified TPP system that achieved efficient multi-focus parallel processing with high uniformity. A microlens array is fabricated, showcasing the system's application capacity to generate an array of devices with high consistency and quality. It is believed that the utilization of metasurface devices will provide a novel TPP operating platform, enabling richer and more flexible printing functionalities while maintaining system miniaturization and low cost.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.