Experimental Observation of a New Attenuation Mechanism in hcp-Metals That May Operate in the Earth's Inner Core

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Simon A. Hunt, Andrew M. Walker, Oliver T. Lord, Stephen Stackhouse, Lewis Schardong, Lora S. Armstrong, Andrew J. Parsons, Geoffrey E. Lloyd, John Wheeler, Danielle M. Fenech, Stefan Michalik, Matthew L. Whitaker
{"title":"Experimental Observation of a New Attenuation Mechanism in hcp-Metals That May Operate in the Earth's Inner Core","authors":"Simon A. Hunt,&nbsp;Andrew M. Walker,&nbsp;Oliver T. Lord,&nbsp;Stephen Stackhouse,&nbsp;Lewis Schardong,&nbsp;Lora S. Armstrong,&nbsp;Andrew J. Parsons,&nbsp;Geoffrey E. Lloyd,&nbsp;John Wheeler,&nbsp;Danielle M. Fenech,&nbsp;Stefan Michalik,&nbsp;Matthew L. Whitaker","doi":"10.1029/2023GC011386","DOIUrl":null,"url":null,"abstract":"<p>Seismic observations show the Earth's inner core has significant and unexplained variation in seismic attenuation with position, depth and direction. Interpreting these observations is difficult without knowledge of the visco- or anelastic dissipation processes active in iron under inner core conditions. Here, a previously unconsidered attenuation mechanism is observed in zinc, a low pressure analog of <i>hcp</i>-iron, during small strain sinusoidal deformation experiments. The experiments were performed in a deformation-DIA combined with X-radiography, at seismic frequencies (∼0.003–0.1 Hz), high pressure and temperatures up to ∼80% of melting temperature. Significant dissipation (0.077 ≤ <i>Q</i><sup>−1</sup>(<i>ω</i>) ≤ 0.488) is observed along with frequency dependent softening of zinc's Young's modulus and an extremely small activation energy for creep (⩽7 kJ mol<sup>−1</sup>). In addition, during sinusoidal deformation the original microstructure is replaced by one with a reduced dislocation density and small, uniform, grain size. This combination of behavior collectively reflects a mode of deformation called “internal stress superplasticity”; this deformation mechanism is unique to anisotropic materials and activated by cyclic loading generating large internal stresses. Here we observe a new form of internal stress superplasticity, which we name as “<i>elastic strain mismatch superplasticity</i>.” In it the large stresses are caused by the compressional anisotropy. If this mechanism is also active in <i>hcp</i>-iron and the Earth's inner-core it will be a contributor to inner-core observed seismic attenuation and constrain the maximum inner-core grain-size to ≲10 km.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GC011386","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GC011386","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic observations show the Earth's inner core has significant and unexplained variation in seismic attenuation with position, depth and direction. Interpreting these observations is difficult without knowledge of the visco- or anelastic dissipation processes active in iron under inner core conditions. Here, a previously unconsidered attenuation mechanism is observed in zinc, a low pressure analog of hcp-iron, during small strain sinusoidal deformation experiments. The experiments were performed in a deformation-DIA combined with X-radiography, at seismic frequencies (∼0.003–0.1 Hz), high pressure and temperatures up to ∼80% of melting temperature. Significant dissipation (0.077 ≤ Q−1(ω) ≤ 0.488) is observed along with frequency dependent softening of zinc's Young's modulus and an extremely small activation energy for creep (⩽7 kJ mol−1). In addition, during sinusoidal deformation the original microstructure is replaced by one with a reduced dislocation density and small, uniform, grain size. This combination of behavior collectively reflects a mode of deformation called “internal stress superplasticity”; this deformation mechanism is unique to anisotropic materials and activated by cyclic loading generating large internal stresses. Here we observe a new form of internal stress superplasticity, which we name as “elastic strain mismatch superplasticity.” In it the large stresses are caused by the compressional anisotropy. If this mechanism is also active in hcp-iron and the Earth's inner-core it will be a contributor to inner-core observed seismic attenuation and constrain the maximum inner-core grain-size to ≲10 km.

Abstract Image

实验观测到可能在地球内核运行的 hcp 金属新衰减机制
地震观测表明,地球内核的地震衰减随位置、深度和方向的变化很大,而且无法解释。如果不了解铁在内核条件下的粘弹性或无弹性耗散过程,就很难解释这些观测结果。在此,研究人员在小应变正弦形变实验中,在锌--hcp-铁的低压类似物--中观察到了一种之前未曾考虑过的衰减机制。实验是在地震频率(∼0.003-0.1 Hz)、高压和高达熔化温度∼80%的温度下,通过变形-DIA 与 X 射线成像相结合的方式进行的。观察到显著的耗散(0.077 ≤ Q-1(ω) ≤ 0.488)以及锌的杨氏模量随频率变化的软化和极小的蠕变活化能(⩽7 kJ mol-1)。此外,在正弦变形过程中,原有的微观结构会被位错密度降低、晶粒尺寸变小且均匀的微观结构所取代。这种行为组合共同反映了一种被称为 "内应力超塑性 "的变形模式;这种变形机制是各向异性材料所独有的,并通过产生大内应力的循环加载而激活。在这里,我们观察到一种新形式的内应力超塑性,并将其命名为 "弹性应变错配超塑性"。在这种情况下,大应力是由压缩各向异性引起的。如果这种机制也在 hcp 铁和地球内核中活跃,那么它将成为内核观测到的地震衰减的一个因素,并将内核晶粒的最大尺寸限制在 ≲10 km。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信