Adjustment of Regional Cortical Thickness Measures for Global Cortical Thickness Obscures Deficits Across the Schizophrenia Spectrum: A Cautionary Note About Normative Modeling of Brain Imaging Data.
Jessica P Y Hua, Susanna L Fryer, Barbara Stuart, Rachel L Loewy, Sophia Vinogradov, Daniel H Mathalon
{"title":"Adjustment of Regional Cortical Thickness Measures for Global Cortical Thickness Obscures Deficits Across the Schizophrenia Spectrum: A Cautionary Note About Normative Modeling of Brain Imaging Data.","authors":"Jessica P Y Hua, Susanna L Fryer, Barbara Stuart, Rachel L Loewy, Sophia Vinogradov, Daniel H Mathalon","doi":"10.1016/j.bpsc.2024.06.001","DOIUrl":null,"url":null,"abstract":"<p><p>Recent neuroimaging studies and publicly disseminated analytic tools suggest that regional morphometric analyses covary for global thickness. We empirically demonstrated that this statistical approach severely underestimates regional thickness dysmorphology in psychiatric disorders. Study 1 included 90 healthy control participants, 51 participants at clinical high risk for psychosis, and 78 participants with early-illness schizophrenia. Study 2 included 56 healthy control participants, 83 participants with nonaffective psychosis, and 30 participants with affective psychosis. We examined global and regional thickness correlations, global thickness group differences, and regional thickness group differences with and without global thickness covariation. Global and regional thickness were strongly correlated across groups. Global thickness was lower in the schizophrenia spectrum groups than the other groups. Regional thickness deficits in schizophrenia spectrum groups were attenuated or eliminated with global thickness covariation. Eliminating the variation that regional thickness shares with global thickness eliminated disease-related effects. This statistical approach results in erroneous conclusions that regional thickness is normal in disorders like schizophrenia or clinical high risk syndrome.</p>","PeriodicalId":93900,"journal":{"name":"Biological psychiatry. Cognitive neuroscience and neuroimaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological psychiatry. Cognitive neuroscience and neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpsc.2024.06.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recent neuroimaging studies and publicly disseminated analytic tools suggest that regional morphometric analyses covary for global thickness. We empirically demonstrated that this statistical approach severely underestimates regional thickness dysmorphology in psychiatric disorders. Study 1 included 90 healthy control participants, 51 participants at clinical high risk for psychosis, and 78 participants with early-illness schizophrenia. Study 2 included 56 healthy control participants, 83 participants with nonaffective psychosis, and 30 participants with affective psychosis. We examined global and regional thickness correlations, global thickness group differences, and regional thickness group differences with and without global thickness covariation. Global and regional thickness were strongly correlated across groups. Global thickness was lower in the schizophrenia spectrum groups than the other groups. Regional thickness deficits in schizophrenia spectrum groups were attenuated or eliminated with global thickness covariation. Eliminating the variation that regional thickness shares with global thickness eliminated disease-related effects. This statistical approach results in erroneous conclusions that regional thickness is normal in disorders like schizophrenia or clinical high risk syndrome.