{"title":"Population genetic structure and demographic history of short mackerel, <i>Rastrelliger brachysoma</i>, in the Gulf of Thailand.","authors":"Amnuay Jondeung, Nuntachai Boonjorn","doi":"10.1080/24701394.2024.2368570","DOIUrl":null,"url":null,"abstract":"<p><p>The short mackerel <i>Rastrelliger brachysoma</i> (Bleeker 1851) is an important fish in the Gulf of Thailand (GoT). The biology of this species has been intensively studied, but its genetic diversity is little known. The genetic diversity, population genetic structure, and demographic history of this species in the GoT were studied using complete mt control region sequences. The CR sequences of 455 mackerel samples collected from 23 localities at four fishing grounds revealed 333 haplotypes with haplotype diversity (<i>h</i>) per population, ranging between 0.8933 and 1.000, with an average of 0.9781. In turn, the nucleotide diversity (µ) ranged between 0.0119 ± 0.0060 and 0.0333 ± 0.0174, with an average of 0.0220 ± 0.00059.A haplotype network analysis showed that all sequences segregated into two subgroups named, clade I and clade II. Two clades were separated by 26 mutational steps. Each clade formed star-like clusters with many haplotypes derived from a common haplotype. Moreover, an analysis of molecular variance (AMOVA) revealed no significant differences among the studied localities, suggesting the presence of a single population in the GoT. Pairwise differences between samples from different fishing regions also indicated no population structure. Both Tajima's <i>D</i> and Fu's <i>F</i><sub>S</sub> statistics were highly significant for the two clades but nonsignificant for the entire population according to a mismatch distribution analysis. These results confirmed that both clades experienced demographic expansion. The estimated expansion times for clade I and clade II were 1,542.307 years (1.5423 ka BP) and 7,602.541 (7.6025 ka BP) years, respectively.</p>","PeriodicalId":74204,"journal":{"name":"Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis","volume":" ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24701394.2024.2368570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The short mackerel Rastrelliger brachysoma (Bleeker 1851) is an important fish in the Gulf of Thailand (GoT). The biology of this species has been intensively studied, but its genetic diversity is little known. The genetic diversity, population genetic structure, and demographic history of this species in the GoT were studied using complete mt control region sequences. The CR sequences of 455 mackerel samples collected from 23 localities at four fishing grounds revealed 333 haplotypes with haplotype diversity (h) per population, ranging between 0.8933 and 1.000, with an average of 0.9781. In turn, the nucleotide diversity (µ) ranged between 0.0119 ± 0.0060 and 0.0333 ± 0.0174, with an average of 0.0220 ± 0.00059.A haplotype network analysis showed that all sequences segregated into two subgroups named, clade I and clade II. Two clades were separated by 26 mutational steps. Each clade formed star-like clusters with many haplotypes derived from a common haplotype. Moreover, an analysis of molecular variance (AMOVA) revealed no significant differences among the studied localities, suggesting the presence of a single population in the GoT. Pairwise differences between samples from different fishing regions also indicated no population structure. Both Tajima's D and Fu's FS statistics were highly significant for the two clades but nonsignificant for the entire population according to a mismatch distribution analysis. These results confirmed that both clades experienced demographic expansion. The estimated expansion times for clade I and clade II were 1,542.307 years (1.5423 ka BP) and 7,602.541 (7.6025 ka BP) years, respectively.