Matthias Bock, Pavel Sekatski, Jean-Daniel Bancal, Stephan Kucera, Tobias Bauer, Nicolas Sangouard, Christoph Becher, Jürgen Eschner
{"title":"Calibration-independent bound on the unitarity of a quantum channel with application to a frequency converter","authors":"Matthias Bock, Pavel Sekatski, Jean-Daniel Bancal, Stephan Kucera, Tobias Bauer, Nicolas Sangouard, Christoph Becher, Jürgen Eschner","doi":"10.1038/s41534-024-00859-0","DOIUrl":null,"url":null,"abstract":"<p>We report on a method to certify a unitary operation with the help of source and measurement apparatuses whose calibration throughout the certification process needs not be trusted. As in the device-independent paradigm our certification method relies on a Bell test and requires no assumption on the underlying Hilbert space dimension, but it removes the need for high detection efficiencies by including the single additional assumption that non-detected events are independent of the measurement settings. The relevance of the proposed method is demonstrated experimentally by bounding the unitarity of a quantum frequency converter. The experiment starts with the heralded creation of a maximally entangled two-qubit state between a single <sup>40</sup>Ca<sup>+</sup> ion and a 854 nm photon. Entanglement preserving frequency conversion to the telecom band is then realized with a non-linear waveguide embedded in a Sagnac interferometer. The resulting ion-telecom photon entangled state is assessed by means of a Bell-CHSH test from which the quality of the frequency conversion is quantified. We demonstrate frequency conversion with an average certified fidelity of ≥84% and an efficiency ≥3.1 × 10<sup>−6</sup> at a confidence level of 99%. This ensures the suitability of the converter for integration in quantum networks from a trustful characterization procedure.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"26 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00859-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We report on a method to certify a unitary operation with the help of source and measurement apparatuses whose calibration throughout the certification process needs not be trusted. As in the device-independent paradigm our certification method relies on a Bell test and requires no assumption on the underlying Hilbert space dimension, but it removes the need for high detection efficiencies by including the single additional assumption that non-detected events are independent of the measurement settings. The relevance of the proposed method is demonstrated experimentally by bounding the unitarity of a quantum frequency converter. The experiment starts with the heralded creation of a maximally entangled two-qubit state between a single 40Ca+ ion and a 854 nm photon. Entanglement preserving frequency conversion to the telecom band is then realized with a non-linear waveguide embedded in a Sagnac interferometer. The resulting ion-telecom photon entangled state is assessed by means of a Bell-CHSH test from which the quality of the frequency conversion is quantified. We demonstrate frequency conversion with an average certified fidelity of ≥84% and an efficiency ≥3.1 × 10−6 at a confidence level of 99%. This ensures the suitability of the converter for integration in quantum networks from a trustful characterization procedure.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.