Effective utilization of lignocellulosic waste generated from food processing centers towards removal of nitrate from water

Naba Kumar Mondal , Kamalesh Sen , Priyasa Ghosh , Priyanka Debnath , Arghadip Mondal
{"title":"Effective utilization of lignocellulosic waste generated from food processing centers towards removal of nitrate from water","authors":"Naba Kumar Mondal ,&nbsp;Kamalesh Sen ,&nbsp;Priyasa Ghosh ,&nbsp;Priyanka Debnath ,&nbsp;Arghadip Mondal","doi":"10.1016/j.scowo.2024.100011","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the use of chemically modified <em>Musa paradisiaca</em> (banana fruit) peels (BPD) as an adsorbent for nitrate removal, representing a food waste management application of this agricultural waste material. This innovative approach addresses waste management challenges while offering a cost-effective and sustainable solution for water treatment. The research evaluates the effectiveness of BPD in a batch system and optimizes the process using Response Surface Methodology (RSM). Detailed characterization of the adsorbent was performed using advanced techniques including scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Point of Zero Charge (pHzpc), Brunauer–Emmett–Teller (BET) surface area analysis, and Fourier Transform-Infrared Spectroscopy (FTIR). Isotherm analysis revealed that the Langmuir model provided an excellent fit (R² = 0.994), with a maximum adsorption capacity of 47.619 mg/g for BPD. Kinetic studies indicated that the pseudo-second-order model was most appropriate (R² = 0.969). Thermodynamic analysis showed that nitrate removal is more favorable at lower temperatures, with an increase in free energy at 313 K and a negative enthalpy value (-28.873 kJ/mol). Optimization via RSM identified optimal conditions: initial nitrate concentration of 83.92 mg/L, pH 3.57, contact time of 38.37 minutes, and temperature of 42.29 ℃, achieving a desirability score of 1.0. Furthermore, Density Functional Theory (DFT) analysis elucidated the adsorption mechanism, highlighting the predominance of C-O interactions in the ligand exchange process, with an electrophilicity index (ω) of −1.331 eV. These findings suggest that lignocellulosic materials from food processing waste, <em>Musa paradisiaca</em> peels, hold significant promise for mitigating nitrate contamination in drinking water.</p></div>","PeriodicalId":101197,"journal":{"name":"Sustainable Chemistry One World","volume":"3 ","pages":"Article 100011"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry One World","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950357424000118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the use of chemically modified Musa paradisiaca (banana fruit) peels (BPD) as an adsorbent for nitrate removal, representing a food waste management application of this agricultural waste material. This innovative approach addresses waste management challenges while offering a cost-effective and sustainable solution for water treatment. The research evaluates the effectiveness of BPD in a batch system and optimizes the process using Response Surface Methodology (RSM). Detailed characterization of the adsorbent was performed using advanced techniques including scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Point of Zero Charge (pHzpc), Brunauer–Emmett–Teller (BET) surface area analysis, and Fourier Transform-Infrared Spectroscopy (FTIR). Isotherm analysis revealed that the Langmuir model provided an excellent fit (R² = 0.994), with a maximum adsorption capacity of 47.619 mg/g for BPD. Kinetic studies indicated that the pseudo-second-order model was most appropriate (R² = 0.969). Thermodynamic analysis showed that nitrate removal is more favorable at lower temperatures, with an increase in free energy at 313 K and a negative enthalpy value (-28.873 kJ/mol). Optimization via RSM identified optimal conditions: initial nitrate concentration of 83.92 mg/L, pH 3.57, contact time of 38.37 minutes, and temperature of 42.29 ℃, achieving a desirability score of 1.0. Furthermore, Density Functional Theory (DFT) analysis elucidated the adsorption mechanism, highlighting the predominance of C-O interactions in the ligand exchange process, with an electrophilicity index (ω) of −1.331 eV. These findings suggest that lignocellulosic materials from food processing waste, Musa paradisiaca peels, hold significant promise for mitigating nitrate contamination in drinking water.

有效利用食品加工中心产生的木质纤维素废物去除水中的硝酸盐
本研究调查了化学改性香蕉果皮(BPD)作为吸附剂去除硝酸盐的使用情况,这代表了这种农业废弃物材料在食品废物管理方面的应用。这种创新方法在解决废物管理难题的同时,还为水处理提供了一种具有成本效益和可持续发展的解决方案。该研究评估了 BPD 在批处理系统中的有效性,并使用响应面方法 (RSM) 对工艺进行了优化。利用扫描电子显微镜 (SEM)、能量色散 X 射线光谱 (EDS)、零电荷点 (pHzpc)、布鲁诺-艾美特-泰勒 (BET) 表面积分析和傅立叶变换红外光谱 (FTIR) 等先进技术对吸附剂进行了详细表征。等温线分析表明,Langmuir 模型具有良好的拟合效果(R² = 0.994),对 BPD 的最大吸附容量为 47.619 毫克/克。动力学研究表明,伪二阶模型最合适(R² = 0.969)。热力学分析表明,在较低温度下更有利于硝酸盐的去除,在 313 K 时自由能增加,焓值为负值(-28.873 kJ/mol)。通过 RSM 优化确定了最佳条件:初始硝酸盐浓度为 83.92 mg/L,pH 值为 3.57,接触时间为 38.37 分钟,温度为 42.29 ℃,可取性得分为 1.0。此外,密度泛函理论(DFT)分析阐明了吸附机理,突出了配体交换过程中 C-O 相互作用的主导地位,亲电指数(ω)为 -1.331 eV。这些研究结果表明,从食品加工废弃物中提取的木质纤维素材料--麝香草果皮--在减轻饮用水硝酸盐污染方面前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信