{"title":"Quantum phase structural stability and switching in twist-graphenes","authors":"Iu.A. Melchakova , G.T. Oyeniyi , D.R. Engelgardt , S.P. Polyutov , P.V. Avramov","doi":"10.1016/j.flatc.2024.100702","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the electronic structure and potential energy surfaces of migration paths in various types of bilayer graphene. Using periodic boundary conditions, density functional theory (DFT), and the generalized gradient approximation (GGA) exchange–correlation functional, along with the nudged elastic band (NEB) method, to investigate the structural stability and dynamic equilibrium of twisted bilayer graphenes (TBGs) with twist angles of 13.2° and 21.8°. The results suggest that twist angles significantly impact atomic and electronic properties, including moiré patterns, superlattice periods, and interfragment distances, which in turn influence bilayer graphene strongly correlated electronic quantum states. This research elucidates the fundamental mechanisms of superlubricity and mutual migration pathways of graphene fragments in TBGs. The low migration barriers observed could facilitate transitions between different energy-related phases, which are determined by the lattice moiré patterns and the localization character of the electronic states, resulting in superlubricity. External mechanical factors may affect the quantum properties of TBGs, indicating potential applications in quantum computing and quantum sensing.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100702"},"PeriodicalIF":5.9000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724000965","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the electronic structure and potential energy surfaces of migration paths in various types of bilayer graphene. Using periodic boundary conditions, density functional theory (DFT), and the generalized gradient approximation (GGA) exchange–correlation functional, along with the nudged elastic band (NEB) method, to investigate the structural stability and dynamic equilibrium of twisted bilayer graphenes (TBGs) with twist angles of 13.2° and 21.8°. The results suggest that twist angles significantly impact atomic and electronic properties, including moiré patterns, superlattice periods, and interfragment distances, which in turn influence bilayer graphene strongly correlated electronic quantum states. This research elucidates the fundamental mechanisms of superlubricity and mutual migration pathways of graphene fragments in TBGs. The low migration barriers observed could facilitate transitions between different energy-related phases, which are determined by the lattice moiré patterns and the localization character of the electronic states, resulting in superlubricity. External mechanical factors may affect the quantum properties of TBGs, indicating potential applications in quantum computing and quantum sensing.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)