Enhanced room temperature ferromagnetism and versatile optical properties in MgFe2O4 spinel ferrite prepared under different calcination temperatures

Thanit Tangcharoen
{"title":"Enhanced room temperature ferromagnetism and versatile optical properties in MgFe2O4 spinel ferrite prepared under different calcination temperatures","authors":"Thanit Tangcharoen","doi":"10.1016/j.rinma.2024.100596","DOIUrl":null,"url":null,"abstract":"<div><p>This study employs the sol-gel auto combustion technique fueled by diethanolamine (DEA) to synthesize nanocrystalline magnesium ferrite (MgFe<sub>2</sub>O<sub>4</sub>) powders. During the study, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–visible diffuse reflectance spectroscopy (UV-DRS), photoluminescence spectroscopy (PL), and vibrating sample magnetometry (VSM) were then used in order to determine how differing calcination temperatures influence the structure, chemical bonding, surface texture, morphology, optical, fluorescence, and magnetic properties of the resulting MgFe<sub>2</sub>O<sub>4</sub> powders. The findings from the XRD and FT-IR analysis indicate that a single-phase spinel structure is formed in each of the MgFe<sub>2</sub>O<sub>4</sub> samples. According to UV-DRS analysis, optimal calcination improved sample reflection levels in comparison to the visible and infrared spectral findings for the as-synthesized sample. The calcined samples exhibited bandgap energy (<em>E</em><sub><em>g</em></sub>) ranging from 2.11 eV to 2.14 eV, which was greater than the 2.02 eV of the as-synthesized sample. Examination of the PL spectra in the range of 380–700 nm revealed various light emission bands for the samples, which increased significantly in intensity at higher calcination temperatures. Furthermore, higher calcination temperatures also increased the magnetization of the MgFe<sub>2</sub>O<sub>4</sub> spinel powders, while coercivity dropped significantly.</p></div>","PeriodicalId":101087,"journal":{"name":"Results in Materials","volume":"23 ","pages":"Article 100596"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590048X24000700/pdfft?md5=5408b74b8ad6fc2d4271203a2fc4f0dc&pid=1-s2.0-S2590048X24000700-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590048X24000700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs the sol-gel auto combustion technique fueled by diethanolamine (DEA) to synthesize nanocrystalline magnesium ferrite (MgFe2O4) powders. During the study, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–visible diffuse reflectance spectroscopy (UV-DRS), photoluminescence spectroscopy (PL), and vibrating sample magnetometry (VSM) were then used in order to determine how differing calcination temperatures influence the structure, chemical bonding, surface texture, morphology, optical, fluorescence, and magnetic properties of the resulting MgFe2O4 powders. The findings from the XRD and FT-IR analysis indicate that a single-phase spinel structure is formed in each of the MgFe2O4 samples. According to UV-DRS analysis, optimal calcination improved sample reflection levels in comparison to the visible and infrared spectral findings for the as-synthesized sample. The calcined samples exhibited bandgap energy (Eg) ranging from 2.11 eV to 2.14 eV, which was greater than the 2.02 eV of the as-synthesized sample. Examination of the PL spectra in the range of 380–700 nm revealed various light emission bands for the samples, which increased significantly in intensity at higher calcination temperatures. Furthermore, higher calcination temperatures also increased the magnetization of the MgFe2O4 spinel powders, while coercivity dropped significantly.

不同煅烧温度下制备的 MgFe2O4 尖晶石铁氧体增强的室温铁磁性和多功能光学特性
本研究采用以二乙醇胺(DEA)为燃料的溶胶-凝胶自燃技术合成纳米晶镁铁硼(MgFe2O4)粉末。在研究过程中,采用了 X 射线衍射 (XRD)、傅立叶变换红外光谱 (FT-IR)、扫描电子显微镜 (SEM)、透射电子显微镜 (TEM)、紫外-可见漫反射光谱 (UV-DRS)、光致发光光谱 (PL)、然后使用振动样品磁力计 (VSM) 来确定不同的煅烧温度如何影响所得 MgFe2O4 粉末的结构、化学键、表面质地、形态、光学、荧光和磁性能。XRD 和 FT-IR 分析结果表明,每个 MgFe2O4 样品都形成了单相尖晶石结构。根据 UV-DRS 分析,与合成样品的可见光和红外光谱结果相比,最佳煅烧提高了样品的反射水平。煅烧样品的带隙能 (Eg) 为 2.11 eV 至 2.14 eV,高于合成样品的 2.02 eV。对 380-700 纳米波长范围内的聚光光谱进行检查后发现,样品具有不同的光发射带,在较高的煅烧温度下,这些光发射带的强度显著增加。此外,煅烧温度越高,MgFe2O4 尖晶石粉末的磁化率也越高,而矫顽力则显著下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信