Effects of deep coal mining on groundwater hydrodynamic and hydrochemical processes in a multi-aquifer system: Insights from a long-term study of mining areas in ecologically fragile western China
Hao Zhan , Shouqiang Liu , Qiang Wu , Weitao Liu , Lihu Shi , Dong Liu
{"title":"Effects of deep coal mining on groundwater hydrodynamic and hydrochemical processes in a multi-aquifer system: Insights from a long-term study of mining areas in ecologically fragile western China","authors":"Hao Zhan , Shouqiang Liu , Qiang Wu , Weitao Liu , Lihu Shi , Dong Liu","doi":"10.1016/j.jconhyd.2024.104386","DOIUrl":null,"url":null,"abstract":"<div><p>The groundwater hydrodynamic and hydrochemical process of the multi-aquifer system will experience complicated and serious influence under deep coal mining disturbance. There is relatively little research that has integrated hydrodynamic and hydrochemical properties of groundwater to investigate the spatiotemporal distribution characteristics and evolution patterns of hydrogeochemistry and hydrodynamic information in deep multi-aquifer systems. The study of the groundwater hydrodynamic and hydrochemical spatiotemporal coupling response of multi-aquifer systems under the deep and special thick coal seam mining-motivated effect in ecologically fragile western mining areas is of great significance for the safe mining of coal resources and ecological environment protection. In this research, the hydrochemical analysis data composed of 218 groundwater samples from Tangjiahui coalfield, Northwest China with 1526 measurements and a 6-year (2016–2021) sampling period were collected for studying the hydrogeochemical spatiotemporal evolution process and governing mechanism of the multi-aquifer system using hierarchical cluster analysis, ion-ratio method, saturation index and multidimensional statistical analysis. Additionally, wavelet analysis and cross-wavelet coherence analysis were implemented to quantitatively recognize the spatiotemporal variation characteristics of hydrodynamic information and analyze the coherence relationships between time series. The results demonstrate that the hydrochemical characteristics exhibit significant spatial differences, while the temporal variation of hydrochemical characteristics in the Permian Shanxi Formation fractured sandstone aquifer (PSFFA), mine water (MW), and Ordovician karst limestone aquifer (OKA) is not significant. The water-rock interaction is the predominant control mechanism for the spatial evolution of hydrogeochemistry in the research area. Moreover, the large-scale mining of deep coal seams controls the type and degree of water-rock interactions by damaging the structure of aquifers and altering the hydrodynamic conditions of groundwater. The period from 2016 to 2021 exhibits multi-time scale characteristics in time series of precipitation, mine water discharge, and the water level of PSFFA and OKA. The mine water discharge has a positive correlation with the water level of PSFFA and OKA, whereas the significant period of precipitation and the water level of PSFFA coherence is not obvious. The research findings not only provide in-depth insights to protect the groundwater resources in water-shortage mining areas but also promote the secure mining of deep coal resources.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"265 ","pages":"Article 104386"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224000901","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The groundwater hydrodynamic and hydrochemical process of the multi-aquifer system will experience complicated and serious influence under deep coal mining disturbance. There is relatively little research that has integrated hydrodynamic and hydrochemical properties of groundwater to investigate the spatiotemporal distribution characteristics and evolution patterns of hydrogeochemistry and hydrodynamic information in deep multi-aquifer systems. The study of the groundwater hydrodynamic and hydrochemical spatiotemporal coupling response of multi-aquifer systems under the deep and special thick coal seam mining-motivated effect in ecologically fragile western mining areas is of great significance for the safe mining of coal resources and ecological environment protection. In this research, the hydrochemical analysis data composed of 218 groundwater samples from Tangjiahui coalfield, Northwest China with 1526 measurements and a 6-year (2016–2021) sampling period were collected for studying the hydrogeochemical spatiotemporal evolution process and governing mechanism of the multi-aquifer system using hierarchical cluster analysis, ion-ratio method, saturation index and multidimensional statistical analysis. Additionally, wavelet analysis and cross-wavelet coherence analysis were implemented to quantitatively recognize the spatiotemporal variation characteristics of hydrodynamic information and analyze the coherence relationships between time series. The results demonstrate that the hydrochemical characteristics exhibit significant spatial differences, while the temporal variation of hydrochemical characteristics in the Permian Shanxi Formation fractured sandstone aquifer (PSFFA), mine water (MW), and Ordovician karst limestone aquifer (OKA) is not significant. The water-rock interaction is the predominant control mechanism for the spatial evolution of hydrogeochemistry in the research area. Moreover, the large-scale mining of deep coal seams controls the type and degree of water-rock interactions by damaging the structure of aquifers and altering the hydrodynamic conditions of groundwater. The period from 2016 to 2021 exhibits multi-time scale characteristics in time series of precipitation, mine water discharge, and the water level of PSFFA and OKA. The mine water discharge has a positive correlation with the water level of PSFFA and OKA, whereas the significant period of precipitation and the water level of PSFFA coherence is not obvious. The research findings not only provide in-depth insights to protect the groundwater resources in water-shortage mining areas but also promote the secure mining of deep coal resources.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.