Uncovering Endolysins against Methicillin-Resistant Staphylococcus aureus Using a Microbial Single-Cell Genome Database.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2024-08-09 Epub Date: 2024-06-21 DOI:10.1021/acsinfecdis.4c00039
Takuya Yoda, Ayumi Matsuhashi, Ai Matsushita, Shohei Shibagaki, Yukie Sasakura, Kazuteru Aoki, Masahito Hosokawa, Soichiro Tsuda
{"title":"Uncovering Endolysins against Methicillin-Resistant <i>Staphylococcus aureus</i> Using a Microbial Single-Cell Genome Database.","authors":"Takuya Yoda, Ayumi Matsuhashi, Ai Matsushita, Shohei Shibagaki, Yukie Sasakura, Kazuteru Aoki, Masahito Hosokawa, Soichiro Tsuda","doi":"10.1021/acsinfecdis.4c00039","DOIUrl":null,"url":null,"abstract":"<p><p>Endolysins, peptidoglycan hydrolases derived from bacteriophages (phages), are being developed as a promising alternative to conventional antibiotics. To obtain highly active endolysins, a diverse library of these endolysins is vital. We propose here microbial single-cell genome sequencing as an efficient tool to discover dozens of previously unknown endolysins, owing to its culture-independent sequencing method. As a proof of concept, we analyzed and recovered endolysin genes within prophage regions of <i>Staphylococcus</i> single-amplified genomes in human skin microbiome samples. We constructed a library of chimeric endolysins by shuffling domains of the natural endolysins and performed high-throughput screening against <i>Staphylococcus aureus</i>. One of the lead endolysins, bbst1027, exhibited desirable antimicrobial properties, such as rapid bactericidal activity, no detectable resistance development, and in vivo efficacy. We foresee that this endolysin discovery pipeline is in principle applicable to any bacterial target and boost the development of novel antimicrobial agents.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00039","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Endolysins, peptidoglycan hydrolases derived from bacteriophages (phages), are being developed as a promising alternative to conventional antibiotics. To obtain highly active endolysins, a diverse library of these endolysins is vital. We propose here microbial single-cell genome sequencing as an efficient tool to discover dozens of previously unknown endolysins, owing to its culture-independent sequencing method. As a proof of concept, we analyzed and recovered endolysin genes within prophage regions of Staphylococcus single-amplified genomes in human skin microbiome samples. We constructed a library of chimeric endolysins by shuffling domains of the natural endolysins and performed high-throughput screening against Staphylococcus aureus. One of the lead endolysins, bbst1027, exhibited desirable antimicrobial properties, such as rapid bactericidal activity, no detectable resistance development, and in vivo efficacy. We foresee that this endolysin discovery pipeline is in principle applicable to any bacterial target and boost the development of novel antimicrobial agents.

Abstract Image

利用微生物单细胞基因组数据库发现抗耐甲氧西林金黄色葡萄球菌的内溶酶。
内溶酶是一种从噬菌体(噬菌体)中提取的肽聚糖水解酶,作为传统抗生素的一种有前途的替代品正在被开发出来。要获得高活性的内溶酶,建立一个多样化的内溶酶文库至关重要。在此,我们建议将微生物单细胞基因组测序作为发现数十种以前未知的内溶酶的有效工具,因为这种测序方法与培养无关。作为概念验证,我们分析并恢复了人类皮肤微生物组样本中葡萄球菌单体扩增基因组原噬菌体区域内的内溶菌酶基因。我们通过对天然内溶素的结构域进行重组,构建了嵌合内溶素文库,并针对金黄色葡萄球菌进行了高通量筛选。其中一种先导内溶素(bbst1027)表现出理想的抗菌特性,如快速杀菌活性、未检测到耐药性产生以及体内疗效。我们预计,这种内溶解素发现管道原则上适用于任何细菌靶标,并能促进新型抗菌剂的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信