Microphysical characteristics of precipitation within convective overshooting over East China observed by GPM DPR and ERA5

IF 5.2 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Nan Sun, Gaopeng Lu, Yunfei Fu
{"title":"Microphysical characteristics of precipitation within convective overshooting over East China observed by GPM DPR and ERA5","authors":"Nan Sun, Gaopeng Lu, Yunfei Fu","doi":"10.5194/acp-24-7123-2024","DOIUrl":null,"url":null,"abstract":"Abstract. We examine the geographical distribution and microphysical three-dimensional structure of convective overshooting over East China by matching the Global Precipitation Measurement Dual-frequency Precipitation Radar (GPM DPR) instrument with the European Centre for Medium-Range Weather Forecasts Fifth-Generation Reanalysis (ERA5). Convective overshooting mainly occurs over Northeast China (NC) and northern Middle and East China (MEC), and its frequency varies from 4×10-4 to 5.4×10-3. Radar reflectivity of convective overshooting over NC accounts for a higher proportion below the freezing level, while MEC and South China (SC) account for a higher proportion above the freezing level, indicating stronger upward motion and more ice crystal particles. The microphysical processes within convective overshooting are unique, leading to various properties of the droplets in precipitation. Droplets of convective overshooting are large but sparse, with an effective droplet radius of nearly 2.5 mm below 10 km, which is about twice that of non-overshooting precipitation. The findings of this study may have important implications for the microphysical evolution associated with convective overshooting and provide more accurate precipitation microphysical parameters as input for model simulations.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"75 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/acp-24-7123-2024","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. We examine the geographical distribution and microphysical three-dimensional structure of convective overshooting over East China by matching the Global Precipitation Measurement Dual-frequency Precipitation Radar (GPM DPR) instrument with the European Centre for Medium-Range Weather Forecasts Fifth-Generation Reanalysis (ERA5). Convective overshooting mainly occurs over Northeast China (NC) and northern Middle and East China (MEC), and its frequency varies from 4×10-4 to 5.4×10-3. Radar reflectivity of convective overshooting over NC accounts for a higher proportion below the freezing level, while MEC and South China (SC) account for a higher proportion above the freezing level, indicating stronger upward motion and more ice crystal particles. The microphysical processes within convective overshooting are unique, leading to various properties of the droplets in precipitation. Droplets of convective overshooting are large but sparse, with an effective droplet radius of nearly 2.5 mm below 10 km, which is about twice that of non-overshooting precipitation. The findings of this study may have important implications for the microphysical evolution associated with convective overshooting and provide more accurate precipitation microphysical parameters as input for model simulations.
GPM DPR 和 ERA5 观测到的华东上空对流凌空降水的微物理特征
摘要通过全球降水测量双频降水雷达(GPM DPR)与欧洲中期天气预报中心第五代再分析(ERA5)的匹配,研究了华东地区对流过冲的地理分布和微物理三维结构。对流过冲主要发生在中国东北(NC)和中国中东部北部(MEC),其频率在 4×10-4 到 5.4×10-3 之间。东北地区对流凌空的雷达反射率在冰面以下的比例较高,而华中和华南地区对流凌空的雷达反射率在冰面以上的比例较高,这表明对流凌空的上升运动较强,冰晶颗粒较多。对流凌空的微物理过程是独特的,导致降水中的水滴具有不同的性质。对流过冲的水滴大而稀疏,10 公里以下的有效水滴半径接近 2.5 毫米,约为非过冲降水的两倍。这项研究的结果可能对与对流过冲相关的微物理演变产生重要影响,并为模式模拟提供更准确的降水微物理参数输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Chemistry and Physics
Atmospheric Chemistry and Physics 地学-气象与大气科学
CiteScore
10.70
自引率
20.60%
发文量
702
审稿时长
6 months
期刊介绍: Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere. The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信