Sustainable upcycling of waste polyethylene terephthalate into hierarchically porous carbon nanosheet for interfacial solar steam and hydroelectricity generation
Qiuxuan Liu, Huiyue Wang, Xueying Wen, Guixin Hu, Huajian Liu, Zhi Gong, Sizheng Bi, Qianyu Wei, Ran Niu, Jiang Gong
{"title":"Sustainable upcycling of waste polyethylene terephthalate into hierarchically porous carbon nanosheet for interfacial solar steam and hydroelectricity generation","authors":"Qiuxuan Liu, Huiyue Wang, Xueying Wen, Guixin Hu, Huajian Liu, Zhi Gong, Sizheng Bi, Qianyu Wei, Ran Niu, Jiang Gong","doi":"10.1016/j.susmat.2024.e01022","DOIUrl":null,"url":null,"abstract":"<div><p>Solar-driven interfacial evaporation coupled with hydroelectricity technology is regarded as a hopeful tactic to co-generate freshwater and electricity. However, constructing low-cost evaporators/generators remain a grand challenge. Herein, we report a salt-assisted carbonization method to convert waste polyethylene terephthalate to be hierarchically porous carbon nanosheet (HPCN) and build a flexible HPCN-based evaporator for freshwater and hydroelectricity co-generation. HPCN exhibits a wrinkled structure with the thickness of ca. 3.4 nm. The HPCN-based evaporator displays good hydrophilicity, high sunlight absorption (98%), high solar-to-thermal conversion, reduced water evaporation enthalpy, and low thermal conductivity. It exhibits high evaporation rate (2.65 kg m<sup>−2</sup> h<sup>−1</sup>) and conversion efficiency (98.0%) through 1 kW m<sup>−2</sup> irradiation, exceeding many advanced solar evaporators. Importantly, the HPCN evaporator-based hydroelectricity generator realizes high voltage (255 mV) and current (310 nA) with good stability. The combination of large specific surface area with wealthy oxygen-containing groups of HPCN plays important roles in hydroelectricity generation. In outdoor experiment, the freshwater production amount from per meter square achieves 6.32 kg. This work provides a green approach to upcycle waste plastics to be functional carbon materials and offers a new platform to construct advanced evaporators for solar evaporation and hydroelectricity generation.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724002021","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Solar-driven interfacial evaporation coupled with hydroelectricity technology is regarded as a hopeful tactic to co-generate freshwater and electricity. However, constructing low-cost evaporators/generators remain a grand challenge. Herein, we report a salt-assisted carbonization method to convert waste polyethylene terephthalate to be hierarchically porous carbon nanosheet (HPCN) and build a flexible HPCN-based evaporator for freshwater and hydroelectricity co-generation. HPCN exhibits a wrinkled structure with the thickness of ca. 3.4 nm. The HPCN-based evaporator displays good hydrophilicity, high sunlight absorption (98%), high solar-to-thermal conversion, reduced water evaporation enthalpy, and low thermal conductivity. It exhibits high evaporation rate (2.65 kg m−2 h−1) and conversion efficiency (98.0%) through 1 kW m−2 irradiation, exceeding many advanced solar evaporators. Importantly, the HPCN evaporator-based hydroelectricity generator realizes high voltage (255 mV) and current (310 nA) with good stability. The combination of large specific surface area with wealthy oxygen-containing groups of HPCN plays important roles in hydroelectricity generation. In outdoor experiment, the freshwater production amount from per meter square achieves 6.32 kg. This work provides a green approach to upcycle waste plastics to be functional carbon materials and offers a new platform to construct advanced evaporators for solar evaporation and hydroelectricity generation.
期刊介绍:
Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.