A new class of quadrature rules for estimating the error in Gauss quadrature

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Aleksandar V. Pejčev , Lothar Reichel , Miodrag M. Spalević , Stefan M. Spalević
{"title":"A new class of quadrature rules for estimating the error in Gauss quadrature","authors":"Aleksandar V. Pejčev ,&nbsp;Lothar Reichel ,&nbsp;Miodrag M. Spalević ,&nbsp;Stefan M. Spalević","doi":"10.1016/j.apnum.2024.06.011","DOIUrl":null,"url":null,"abstract":"<div><p>The need to evaluate Gauss quadrature rules arises in many applications in science and engineering. It often is important to be able to estimate the quadrature error when applying an <em>ℓ</em>-point Gauss rule, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>, where <em>f</em> is an integrand of interest. Such an estimate often is furnished by applying another quadrature rule, <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>, with <span><math><mi>k</mi><mo>&gt;</mo><mi>ℓ</mi></math></span> nodes, and using the difference <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>−</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> or its magnitude as an estimate for the quadrature error in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> or its magnitude. The classical approach to estimate the error in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> is to let <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>, with <span><math><mi>k</mi><mo>=</mo><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></math></span>, be the Gauss-Kronrod quadrature rule associated with <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>. However, it is well known that the Gauss-Kronrod rule associated with a Gauss rule <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> might not exist for certain measures that determine the Gauss rule and for certain numbers of nodes. This prompted M. M. Spalević <span>[1]</span> to develop generalized averaged Gauss rules, <span><math><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, with <span><math><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></math></span> nodes for estimating the error in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>. Similarly as for <span><math><mo>(</mo><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-node Gauss-Kronrod rules, <em>ℓ</em> nodes of the rule <span><math><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> agree with the nodes of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span>. However, generalized averaged Gauss rules are not internal for some measures. They therefore may not be applicable when the integrand only is defined on the convex hull of the support of the measure. This paper describes a new kind of quadrature rules that may be internal also when generalized averaged quadrature rules are not. The construction of the new quadrature rules is based on theory developed by Peherstorfer <span>[2]</span>. Their application is particularly attractive when the rule <span><math><msub><mrow><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> is not internal, the integrand cannot be evaluated at all its nodes, and the integrand is inexpensive to evaluate at the quadrature points. Computed examples that illustrate the performance of the new quadrature rules introduced in this paper are presented.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016892742400151X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The need to evaluate Gauss quadrature rules arises in many applications in science and engineering. It often is important to be able to estimate the quadrature error when applying an -point Gauss rule, G(f), where f is an integrand of interest. Such an estimate often is furnished by applying another quadrature rule, Qk(f), with k> nodes, and using the difference Qk(f)G(f) or its magnitude as an estimate for the quadrature error in G(f) or its magnitude. The classical approach to estimate the error in G(f) is to let Qk(f), with k=2+1, be the Gauss-Kronrod quadrature rule associated with G(f). However, it is well known that the Gauss-Kronrod rule associated with a Gauss rule G(f) might not exist for certain measures that determine the Gauss rule and for certain numbers of nodes. This prompted M. M. Spalević [1] to develop generalized averaged Gauss rules, Gˆ2+1, with 2+1 nodes for estimating the error in G(f). Similarly as for (2+1)-node Gauss-Kronrod rules, nodes of the rule Gˆ2+1 agree with the nodes of G. However, generalized averaged Gauss rules are not internal for some measures. They therefore may not be applicable when the integrand only is defined on the convex hull of the support of the measure. This paper describes a new kind of quadrature rules that may be internal also when generalized averaged quadrature rules are not. The construction of the new quadrature rules is based on theory developed by Peherstorfer [2]. Their application is particularly attractive when the rule Gˆ2+1 is not internal, the integrand cannot be evaluated at all its nodes, and the integrand is inexpensive to evaluate at the quadrature points. Computed examples that illustrate the performance of the new quadrature rules introduced in this paper are presented.

用于估计高斯正交误差的一类新正交规则
在科学和工程学的许多应用中,都需要对高斯正交规则进行评估。在应用 ℓ 点高斯正交规则 Gℓ(f) 时,经常需要估计正交误差。这种估计通常是通过应用另一个具有 k>ℓ 节点的正交规则 Qk(f),并使用 Qk(f)-Gℓ(f) 的差值或其大小来估计 Gℓ(f) 的正交误差或其大小。估算 Gℓ(f) 中误差的经典方法是让 Qk(f) (k=2ℓ+1)成为与 Gℓ(f) 相关的高斯-克罗洛德正交规则。然而,众所周知,与高斯定则 Gℓ(f) 相关联的高斯-克朗罗德定则对于决定高斯定则的某些度量和某些节点数来说可能并不存在。这促使 M. M. Spalević [1] 开发了具有 2ℓ+1 节点的广义平均高斯规则 Gˆ2ℓ+1,用于估计 Gℓ(f) 的误差。与(2ℓ+1)节点高斯-克朗罗德规则类似,Gˆ2ℓ+1 规则的 ℓ 节点与 Gℓ 的节点一致。然而,广义平均高斯规则对于某些度量并不具有内部性。因此,当积分只定义在度量支持的凸壳上时,它们可能并不适用。本文介绍了一种新的正交规则,当广义平均正交规则不具有内部性时,它也可能具有内部性。新正交规则的构建基于 Peherstorfer [2] 提出的理论。当 Gˆ2ℓ+1 规则不是内部规则、积分无法在其所有节点上求值以及积分在正交点上求值成本较低时,它们的应用尤其具有吸引力。本文通过计算实例说明了新正交规则的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信