{"title":"Frequentist belief update under ambiguous evidence in social networks","authors":"Michel Grabisch , M. Alperen Yasar","doi":"10.1016/j.ijar.2024.109240","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study a frequentist approach to belief updating in the framework of Dempster-Shafer Theory (DST). We propose several mechanisms that allow the gathering of possibly ambiguous pieces of evidence over time to obtain a belief mass assignment. We then use our approach to study the impact of ambiguous evidence on the belief distribution of agents in social networks. We illustrate our approach by taking three representative situations. In the first one, we suppose that there is an unknown state of nature, and agents form belief in the set of possible states. Nature constantly sends a signal which reflects the true state with some probability but which can also be ambiguous. In the second situation, there is no ground truth, and agents are against or in favor of some ethical or societal issues. In the third situation, there is no ground state either, but agents have opinions on left, center, and right political parties. We show that our approach can model various phenomena often observed in social networks, such as polarization or bounded confidence effects.</p></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"172 ","pages":"Article 109240"},"PeriodicalIF":3.2000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888613X24001270/pdfft?md5=e461e86b3dd9d7ca88c205f611e3b5d2&pid=1-s2.0-S0888613X24001270-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24001270","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study a frequentist approach to belief updating in the framework of Dempster-Shafer Theory (DST). We propose several mechanisms that allow the gathering of possibly ambiguous pieces of evidence over time to obtain a belief mass assignment. We then use our approach to study the impact of ambiguous evidence on the belief distribution of agents in social networks. We illustrate our approach by taking three representative situations. In the first one, we suppose that there is an unknown state of nature, and agents form belief in the set of possible states. Nature constantly sends a signal which reflects the true state with some probability but which can also be ambiguous. In the second situation, there is no ground truth, and agents are against or in favor of some ethical or societal issues. In the third situation, there is no ground state either, but agents have opinions on left, center, and right political parties. We show that our approach can model various phenomena often observed in social networks, such as polarization or bounded confidence effects.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.