Homeostasis in networks with multiple inputs.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
João Luiz de Oliveira Madeira, Fernando Antoneli
{"title":"Homeostasis in networks with multiple inputs.","authors":"João Luiz de Oliveira Madeira, Fernando Antoneli","doi":"10.1007/s00285-024-02117-5","DOIUrl":null,"url":null,"abstract":"<p><p>Homeostasis, also known as adaptation, refers to the ability of a system to counteract persistent external disturbances and tightly control the output of a key observable. Existing studies on homeostasis in network dynamics have mainly focused on 'perfect adaptation' in deterministic single-input single-output networks where the disturbances are scalar and affect the network dynamics via a pre-specified input node. In this paper we provide a full classification of all possible network topologies capable of generating infinitesimal homeostasis in arbitrarily large and complex multiple inputs networks. Working in the framework of 'infinitesimal homeostasis' allows us to make no assumption about how the components are interconnected and the functional form of the associated differential equations, apart from being compatible with the network architecture. Remarkably, we show that there are just three distinct 'mechanisms' that generate infinitesimal homeostasis. Each of these three mechanisms generates a rich class of well-defined network topologies-called homeostasis subnetworks. More importantly, we show that these classes of homeostasis subnetworks provides a topological basis for the classification of 'homeostasis types': the full set of all possible multiple inputs networks can be uniquely decomposed into these special homeostasis subnetworks. We illustrate our results with some simple abstract examples and a biologically realistic model for the co-regulation of calcium ( <math><mtext>Ca</mtext></math> ) and phosphate ( <math><msub><mtext>PO</mtext> <mn>4</mn></msub> </math> ) in the rat. Furthermore, we identify a new phenomenon that occurs in the multiple input setting, that we call homeostasis mode interaction, in analogy with the well-known characteristic of multiparameter bifurcation theory.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11190020/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02117-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Homeostasis, also known as adaptation, refers to the ability of a system to counteract persistent external disturbances and tightly control the output of a key observable. Existing studies on homeostasis in network dynamics have mainly focused on 'perfect adaptation' in deterministic single-input single-output networks where the disturbances are scalar and affect the network dynamics via a pre-specified input node. In this paper we provide a full classification of all possible network topologies capable of generating infinitesimal homeostasis in arbitrarily large and complex multiple inputs networks. Working in the framework of 'infinitesimal homeostasis' allows us to make no assumption about how the components are interconnected and the functional form of the associated differential equations, apart from being compatible with the network architecture. Remarkably, we show that there are just three distinct 'mechanisms' that generate infinitesimal homeostasis. Each of these three mechanisms generates a rich class of well-defined network topologies-called homeostasis subnetworks. More importantly, we show that these classes of homeostasis subnetworks provides a topological basis for the classification of 'homeostasis types': the full set of all possible multiple inputs networks can be uniquely decomposed into these special homeostasis subnetworks. We illustrate our results with some simple abstract examples and a biologically realistic model for the co-regulation of calcium ( Ca ) and phosphate ( PO 4 ) in the rat. Furthermore, we identify a new phenomenon that occurs in the multiple input setting, that we call homeostasis mode interaction, in analogy with the well-known characteristic of multiparameter bifurcation theory.

Abstract Image

多输入网络中的平衡。
同态也称适应,是指系统抵御持续外部干扰并严格控制关键观测指标输出的能力。关于网络动力学中同态平衡的现有研究主要集中在确定性单输入单输出网络中的 "完美适应",即干扰是标量的,并通过预先指定的输入节点影响网络动力学。在本文中,我们对所有可能的网络拓扑结构进行了全面分类,这些拓扑结构能够在任意复杂的大型多输入网络中产生无限小的平衡。在 "无穷小平衡 "的框架下工作,除了与网络架构兼容之外,我们无需假设各组成部分是如何相互连接的,也无需假设相关微分方程的函数形式。值得注意的是,我们发现只有三种不同的 "机制 "能产生无限小的平衡。这三种机制中的每一种都会产生一类定义明确的丰富网络拓扑结构,即同态子网络。更重要的是,我们证明了这些平衡子网络为 "平衡类型 "的分类提供了拓扑基础:所有可能的多输入网络都可以唯一地分解为这些特殊的平衡子网络。我们用一些简单的抽象例子和大鼠体内钙(Ca)和磷酸盐(PO 4)共同调节的生物现实模型来说明我们的研究结果。此外,我们还发现了一种在多输入环境下出现的新现象,我们将其称为平衡模式交互作用,这与众所周知的多参数分岔理论的特征相类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信