Effect of a synthetic hydroxyapatite-based bone grafting material compared to established bone substitute materials on regeneration of critical-size bone defects in the ovine scapula.
Jonas Wüster, Norbert Neckel, Florian Sterzik, Li Xiang-Tischhauser, Dirk Barnewitz, Antje Genzel, Steffen Koerdt, Carsten Rendenbach, Christian Müller-Mai, Max Heiland, Susanne Nahles, Christine Knabe
{"title":"Effect of a synthetic hydroxyapatite-based bone grafting material compared to established bone substitute materials on regeneration of critical-size bone defects in the ovine scapula.","authors":"Jonas Wüster, Norbert Neckel, Florian Sterzik, Li Xiang-Tischhauser, Dirk Barnewitz, Antje Genzel, Steffen Koerdt, Carsten Rendenbach, Christian Müller-Mai, Max Heiland, Susanne Nahles, Christine Knabe","doi":"10.1093/rb/rbae041","DOIUrl":null,"url":null,"abstract":"<p><p>Lately, the potential risk of disease transmission due to the use of bovine-derived bone substitutes has become obvious, demonstrating the urgent need for a synthetic grafting material with comparable bioactive behaviour and properties. Therefore, the effect of a synthetic hydroxyapatite (HA) (Osbone<sup>®</sup>) bone grafting material on bone regeneration was evaluated 2 weeks, 1 month, and 3, 6, 12 and 18 months after implantation in critical-size bone defects in the ovine scapula and compared to that of a bovine-derived HA (Bio-Oss<sup>®</sup>) and β-tricalcium phosphate (TCP) (Cerasorb<sup>®</sup> M). New bone formation and the biodegradability of the bone substitutes were assessed histomorphometrically. Hard tissue histology and immunohistochemical analysis were employed to characterize collagen type I, alkaline phosphatase, osteocalcin, as well as bone sialoprotein expression in the various cell and matrix components of the bone tissue to evaluate the bioactive properties of the bone grafting materials. No inflammatory tissue response was detected with any of the bone substitute materials studied. After 3 and 6 months, β-TCP (Cerasorb<sup>®</sup> M) showed superior bone formation when compared to both HA-based materials (3 months: β-TCP 55.65 ± 2.03% vs. SHA 49.05 ± 3.84% and BHA 47.59 ± 1.97%; <i>p </i>≤<i> </i>0.03; 6 months: β-TCP 62.03 ± 1.58%; SHA: 55.83 ± 2.59%; BHA: 53.44 ± 0.78%; <i>p </i>≤<i> </i>0.04). Further, after 12 and 18 months, a similar degree of bone formation and bone-particle contact was noted for all three bone substitute materials without any significant differences. The synthetic HA supported new bone formation, osteogenic marker expression, matrix mineralization and good bone-bonding behaviour to an equal and even slightly superior degree compared to the bovine-derived HA. As a result, synthetic HA can be regarded as a valuable alternative to the bovine-derived HA without the potential risk of disease transmission.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187503/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae041","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Lately, the potential risk of disease transmission due to the use of bovine-derived bone substitutes has become obvious, demonstrating the urgent need for a synthetic grafting material with comparable bioactive behaviour and properties. Therefore, the effect of a synthetic hydroxyapatite (HA) (Osbone®) bone grafting material on bone regeneration was evaluated 2 weeks, 1 month, and 3, 6, 12 and 18 months after implantation in critical-size bone defects in the ovine scapula and compared to that of a bovine-derived HA (Bio-Oss®) and β-tricalcium phosphate (TCP) (Cerasorb® M). New bone formation and the biodegradability of the bone substitutes were assessed histomorphometrically. Hard tissue histology and immunohistochemical analysis were employed to characterize collagen type I, alkaline phosphatase, osteocalcin, as well as bone sialoprotein expression in the various cell and matrix components of the bone tissue to evaluate the bioactive properties of the bone grafting materials. No inflammatory tissue response was detected with any of the bone substitute materials studied. After 3 and 6 months, β-TCP (Cerasorb® M) showed superior bone formation when compared to both HA-based materials (3 months: β-TCP 55.65 ± 2.03% vs. SHA 49.05 ± 3.84% and BHA 47.59 ± 1.97%; p ≤0.03; 6 months: β-TCP 62.03 ± 1.58%; SHA: 55.83 ± 2.59%; BHA: 53.44 ± 0.78%; p ≤0.04). Further, after 12 and 18 months, a similar degree of bone formation and bone-particle contact was noted for all three bone substitute materials without any significant differences. The synthetic HA supported new bone formation, osteogenic marker expression, matrix mineralization and good bone-bonding behaviour to an equal and even slightly superior degree compared to the bovine-derived HA. As a result, synthetic HA can be regarded as a valuable alternative to the bovine-derived HA without the potential risk of disease transmission.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.