M.P.E. van Gent-Pelzer , A.M. Dullemans , M. Verbeek, P.J.M. Bonants, T.A.J. van der Lee
{"title":"Development and evaluation of one-step RT-qPCR TaqMan multiplex panels applied to six viruses occurring in lily and tulip bulbs","authors":"M.P.E. van Gent-Pelzer , A.M. Dullemans , M. Verbeek, P.J.M. Bonants, T.A.J. van der Lee","doi":"10.1016/j.jviromet.2024.114987","DOIUrl":null,"url":null,"abstract":"<div><p>One-step RT-qPCR TaqMan assays have been developed for six plant viruses with considerable economic impact in the growing of tulip and lily bulbs: lily mottle virus, lily symptomless virus, lily virus X, Plantago asiatica mosaic virus, tulip breaking virus and tulip virus X. To enhance efficacy and cost-efficiency these assays were combined into multiplex panels. Four different multiplex panels were designed, each consisting of three virus assays and an adapted assay for the housekeeping gene nad5 of lilies and tulips, that acts as an internal amplification control. To eliminate false negative results due to variation in the viral genome sequences, for each target virus two assays were developed on distinct conserved genomic regions. Specificity, PCR efficiency and compatibility of primers and probes were tested using gBlock constructions. Diagnostic samples were used to evaluate the strategy. High Throughput Sequencing of a set of the diagnostic samples, further verified the presence or absence of the viruses in the RNA samples and sequence variations in the target genes. This interchangeable multiplex panel strategy may be a valuable tool for the detection of viruses in certification, surveys and virus diagnostics.</p></div>","PeriodicalId":17663,"journal":{"name":"Journal of virological methods","volume":"329 ","pages":"Article 114987"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166093424001113/pdfft?md5=c1338c0c3a8f9d4518a903d066e01a73&pid=1-s2.0-S0166093424001113-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of virological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166093424001113","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
One-step RT-qPCR TaqMan assays have been developed for six plant viruses with considerable economic impact in the growing of tulip and lily bulbs: lily mottle virus, lily symptomless virus, lily virus X, Plantago asiatica mosaic virus, tulip breaking virus and tulip virus X. To enhance efficacy and cost-efficiency these assays were combined into multiplex panels. Four different multiplex panels were designed, each consisting of three virus assays and an adapted assay for the housekeeping gene nad5 of lilies and tulips, that acts as an internal amplification control. To eliminate false negative results due to variation in the viral genome sequences, for each target virus two assays were developed on distinct conserved genomic regions. Specificity, PCR efficiency and compatibility of primers and probes were tested using gBlock constructions. Diagnostic samples were used to evaluate the strategy. High Throughput Sequencing of a set of the diagnostic samples, further verified the presence or absence of the viruses in the RNA samples and sequence variations in the target genes. This interchangeable multiplex panel strategy may be a valuable tool for the detection of viruses in certification, surveys and virus diagnostics.
期刊介绍:
The Journal of Virological Methods focuses on original, high quality research papers that describe novel and comprehensively tested methods which enhance human, animal, plant, bacterial or environmental virology and prions research and discovery.
The methods may include, but not limited to, the study of:
Viral components and morphology-
Virus isolation, propagation and development of viral vectors-
Viral pathogenesis, oncogenesis, vaccines and antivirals-
Virus replication, host-pathogen interactions and responses-
Virus transmission, prevention, control and treatment-
Viral metagenomics and virome-
Virus ecology, adaption and evolution-
Applied virology such as nanotechnology-
Viral diagnosis with novelty and comprehensive evaluation.
We seek articles, systematic reviews, meta-analyses and laboratory protocols that include comprehensive technical details with statistical confirmations that provide validations against current best practice, international standards or quality assurance programs and which advance knowledge in virology leading to improved medical, veterinary or agricultural practices and management.