Nikita S Fedorov, Artem I Malomouzh, Alexey M Petrov
{"title":"Effects of membrane cholesterol-targeting chemicals on skeletal muscle contractions evoked by direct and indirect stimulation.","authors":"Nikita S Fedorov, Artem I Malomouzh, Alexey M Petrov","doi":"10.1007/s10974-024-09675-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cholesterol is one of the major components of plasma membrane, where its distribution is nonhomogeneous and it participates in lipid raft formation. In skeletal muscle cholesterol and lipid rafts seem to be important for excitation-contraction coupling and for neuromuscular transmission, involving cholesterol-rich synaptic vesicles. In the present study, nerve and muscle stimulation-evoked contractions were recorded to assess the role of cholesterol in contractile function of mouse diaphragm. Exposure to cholesterol oxidase (0.2 U/ml) and cholesterol-depleting agent methyl-β-cyclodextrin (1 mM) did not affect markedly contractile responses to both direct and indirect stimulation at low and high frequency. However, methyl-β-cyclodextrin at high concentration (10 mM) strongly decreased the force of both single and tetanus contractions induced by phrenic nerve stimulation. This decline in contractile function was more profoundly expressed when methyl-β-cyclodextrin application was combined with phrenic nerve activation. At the same time, 10 mM methyl-β-cyclodextrin had no effect on contractions upon direct muscle stimulation at low and high frequency. Thus, strong cholesterol depletion suppresses contractile function mainly due to disturbance of the neuromuscular communication, whereas muscle fiber contractility remains resistant to decline.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Muscle Research and Cell Motility","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10974-024-09675-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cholesterol is one of the major components of plasma membrane, where its distribution is nonhomogeneous and it participates in lipid raft formation. In skeletal muscle cholesterol and lipid rafts seem to be important for excitation-contraction coupling and for neuromuscular transmission, involving cholesterol-rich synaptic vesicles. In the present study, nerve and muscle stimulation-evoked contractions were recorded to assess the role of cholesterol in contractile function of mouse diaphragm. Exposure to cholesterol oxidase (0.2 U/ml) and cholesterol-depleting agent methyl-β-cyclodextrin (1 mM) did not affect markedly contractile responses to both direct and indirect stimulation at low and high frequency. However, methyl-β-cyclodextrin at high concentration (10 mM) strongly decreased the force of both single and tetanus contractions induced by phrenic nerve stimulation. This decline in contractile function was more profoundly expressed when methyl-β-cyclodextrin application was combined with phrenic nerve activation. At the same time, 10 mM methyl-β-cyclodextrin had no effect on contractions upon direct muscle stimulation at low and high frequency. Thus, strong cholesterol depletion suppresses contractile function mainly due to disturbance of the neuromuscular communication, whereas muscle fiber contractility remains resistant to decline.
期刊介绍:
The Journal of Muscle Research and Cell Motility has as its main aim the publication of original research which bears on either the excitation and contraction of muscle, the analysis of any one of the processes involved therein, the processes underlying contractility and motility of animal and plant cells, the toxicology and pharmacology related to contractility, or the formation, dynamics and turnover of contractile structures in muscle and non-muscle cells. Studies describing the impact of pathogenic mutations in genes encoding components of contractile structures in humans or animals are welcome, provided they offer mechanistic insight into the disease process or the underlying gene function. The policy of the Journal is to encourage any form of novel practical study whatever its specialist interest, as long as it falls within this broad field. Theoretical essays are welcome provided that they are concise and suggest practical ways in which they may be tested. Manuscripts reporting new mutations in known disease genes without validation and mechanistic insight will not be considered. It is the policy of the journal that cells lines, hybridomas and DNA clones should be made available by the developers to any qualified investigator. Submission of a manuscript for publication constitutes an agreement of the authors to abide by this principle.