Iron Oxide-Doped Carbon Nanoparticles Stabilised with Functionally Modified Hyperbranched Polyglycerol for Cd2+ Sensing and Photodynamic Antibacterial Therapeutic Applications.
{"title":"Iron Oxide-Doped Carbon Nanoparticles Stabilised with Functionally Modified Hyperbranched Polyglycerol for Cd<sup>2+</sup> Sensing and Photodynamic Antibacterial Therapeutic Applications.","authors":"Nihita Linson, Jissy Jacob, Sunny Kuriakose","doi":"10.1007/s10895-024-03769-8","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoscale materials are being developed from individual particles to multi-component assemblies, with carbon nanomaterials being particularly useful in bioimaging, sensing, and optoelectronics due to their unique optical properties, enhanced by surface passivation and chemical doping. Noble metals are commonly used in conjunction with carbon-based nanomaterials for the synthesis of nanohybrids. Carbon-based materials can function as photosensitizers and effective carriers in photodynamic therapy, enabling the use of combined treatment approaches. The hydrophobicity and agglomeration tendency of carbon nanoparticles pose a drawback. This study is an attempt to overcome these limitations, which involved the synthesis of iron oxide-doped carbon nanoparticles through the carbonisation of citric acid and hexamethylene tetramine, followed by doping them with iron oxide. The as synthesized iron oxide-doped carbon nanoparticles were stabilised with fluorescently modified hyperbranched polyglycerol. The efficacy of these nanoparticles in photodynamic antibacterial therapy and Cd (II) ion sensing was investigated. The selectivity of stabilised nanoparticles against Cd<sup>2+</sup> ion is presented in the current study. The current study also compares the antibacterial efficacy of undoped, iron oxide-doped and stabilised nanoparticle systems. The possible toxic effects of the synthesised nanosystems were investigated in order to assess their suitability for biomedical applications and establish their safety profile.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"3923-3943"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03769-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoscale materials are being developed from individual particles to multi-component assemblies, with carbon nanomaterials being particularly useful in bioimaging, sensing, and optoelectronics due to their unique optical properties, enhanced by surface passivation and chemical doping. Noble metals are commonly used in conjunction with carbon-based nanomaterials for the synthesis of nanohybrids. Carbon-based materials can function as photosensitizers and effective carriers in photodynamic therapy, enabling the use of combined treatment approaches. The hydrophobicity and agglomeration tendency of carbon nanoparticles pose a drawback. This study is an attempt to overcome these limitations, which involved the synthesis of iron oxide-doped carbon nanoparticles through the carbonisation of citric acid and hexamethylene tetramine, followed by doping them with iron oxide. The as synthesized iron oxide-doped carbon nanoparticles were stabilised with fluorescently modified hyperbranched polyglycerol. The efficacy of these nanoparticles in photodynamic antibacterial therapy and Cd (II) ion sensing was investigated. The selectivity of stabilised nanoparticles against Cd2+ ion is presented in the current study. The current study also compares the antibacterial efficacy of undoped, iron oxide-doped and stabilised nanoparticle systems. The possible toxic effects of the synthesised nanosystems were investigated in order to assess their suitability for biomedical applications and establish their safety profile.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.