Ummat Somjee, Peter Marting, Salvatore Anzaldo, Leigh W Simmons, Christina J Painting
{"title":"Extreme range in adult body size reveals hidden trade-offs among sexually selected traits.","authors":"Ummat Somjee, Peter Marting, Salvatore Anzaldo, Leigh W Simmons, Christina J Painting","doi":"10.1093/evolut/qpae084","DOIUrl":null,"url":null,"abstract":"<p><p>Sexually selected weapons used to monopolize mating opportunities are predicted to trade-off with traits used in competition for fertilization. Yet, the limited size range typically found among adults of a species often precludes clear comparisons between population-level and individual-level relative trait investment. The jousting weevil, Brentus anchorago (Coleoptera: Brentidae), varies more than 26-fold in body mass, which is among the most extreme adult body size ranges of any solitary terrestrial species. We reveal a trade-off at a population level: hypermetric scaling in male weapons (slope = 1.59) and a closely mirrored reversal in allocation to postcopulatory traits (slope = 0.54). Yet, at the individual level, we find the opposite pattern; males that invest relatively more in weapons for their size class also invest more in postcopulatory traits. Across 36 dung beetle and 41 brentine weevil species, we find the allometric slope explains more trait variation at larger body size ranges; in brentines, population-level scaling patterns become more detectable in species with a larger range in adult body size. Our findings reveal that population-level allometries and individual-level trade-offs can both be important in shaping relative trait allocation; we highlight that the adult body size range is rarely examined but may be integral to gaining a deeper understanding of trade-offs in reproductive allocation.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpae084","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sexually selected weapons used to monopolize mating opportunities are predicted to trade-off with traits used in competition for fertilization. Yet, the limited size range typically found among adults of a species often precludes clear comparisons between population-level and individual-level relative trait investment. The jousting weevil, Brentus anchorago (Coleoptera: Brentidae), varies more than 26-fold in body mass, which is among the most extreme adult body size ranges of any solitary terrestrial species. We reveal a trade-off at a population level: hypermetric scaling in male weapons (slope = 1.59) and a closely mirrored reversal in allocation to postcopulatory traits (slope = 0.54). Yet, at the individual level, we find the opposite pattern; males that invest relatively more in weapons for their size class also invest more in postcopulatory traits. Across 36 dung beetle and 41 brentine weevil species, we find the allometric slope explains more trait variation at larger body size ranges; in brentines, population-level scaling patterns become more detectable in species with a larger range in adult body size. Our findings reveal that population-level allometries and individual-level trade-offs can both be important in shaping relative trait allocation; we highlight that the adult body size range is rarely examined but may be integral to gaining a deeper understanding of trade-offs in reproductive allocation.
期刊介绍:
Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.