EfficientNet-based machine learning architecture for sleep apnea identification in clinical single-lead ECG signal data sets.

IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Meng-Hsuan Liu, Shang-Yu Chien, Ya-Lun Wu, Ting-Hsuan Sun, Chun-Sen Huang, Kai-Cheng Hsu, Liang-Wen Hang
{"title":"EfficientNet-based machine learning architecture for sleep apnea identification in clinical single-lead ECG signal data sets.","authors":"Meng-Hsuan Liu, Shang-Yu Chien, Ya-Lun Wu, Ting-Hsuan Sun, Chun-Sen Huang, Kai-Cheng Hsu, Liang-Wen Hang","doi":"10.1186/s12938-024-01252-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Our objective was to create a machine learning architecture capable of identifying obstructive sleep apnea (OSA) patterns in single-lead electrocardiography (ECG) signals, exhibiting exceptional performance when utilized in clinical data sets.</p><p><strong>Methods: </strong>We conducted our research using a data set consisting of 1656 patients, representing a diverse demographic, from the sleep center of China Medical University Hospital. To detect apnea ECG segments and extract apnea features, we utilized the EfficientNet and some of its layers, respectively. Furthermore, we compared various training and data preprocessing techniques to enhance the model's prediction, such as setting class and sample weights or employing overlapping and regular slicing. Finally, we tested our approach against other literature on the Apnea-ECG database.</p><p><strong>Results: </strong>Our research found that the EfficientNet model achieved the best apnea segment detection using overlapping slicing and sample-weight settings, with an AUC of 0.917 and an accuracy of 0.855. For patient screening with AHI > 30, we combined the trained model with XGBoost, leading to an AUC of 0.975 and an accuracy of 0.928. Additional tests using PhysioNet data showed that our model is comparable in performance to existing models regarding its ability to screen OSA levels.</p><p><strong>Conclusions: </strong>Our suggested architecture, coupled with training and preprocessing techniques, showed admirable performance with a diverse demographic dataset, bringing us closer to practical implementation in OSA diagnosis. Trial registration The data for this study were collected retrospectively from the China Medical University Hospital in Taiwan with approval from the institutional review board CMUH109-REC3-018.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"23 1","pages":"57"},"PeriodicalIF":2.9000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188209/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-024-01252-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Our objective was to create a machine learning architecture capable of identifying obstructive sleep apnea (OSA) patterns in single-lead electrocardiography (ECG) signals, exhibiting exceptional performance when utilized in clinical data sets.

Methods: We conducted our research using a data set consisting of 1656 patients, representing a diverse demographic, from the sleep center of China Medical University Hospital. To detect apnea ECG segments and extract apnea features, we utilized the EfficientNet and some of its layers, respectively. Furthermore, we compared various training and data preprocessing techniques to enhance the model's prediction, such as setting class and sample weights or employing overlapping and regular slicing. Finally, we tested our approach against other literature on the Apnea-ECG database.

Results: Our research found that the EfficientNet model achieved the best apnea segment detection using overlapping slicing and sample-weight settings, with an AUC of 0.917 and an accuracy of 0.855. For patient screening with AHI > 30, we combined the trained model with XGBoost, leading to an AUC of 0.975 and an accuracy of 0.928. Additional tests using PhysioNet data showed that our model is comparable in performance to existing models regarding its ability to screen OSA levels.

Conclusions: Our suggested architecture, coupled with training and preprocessing techniques, showed admirable performance with a diverse demographic dataset, bringing us closer to practical implementation in OSA diagnosis. Trial registration The data for this study were collected retrospectively from the China Medical University Hospital in Taiwan with approval from the institutional review board CMUH109-REC3-018.

基于 EfficientNet 的机器学习架构,用于在临床单导联心电图信号数据集中识别睡眠呼吸暂停。
目标:我们的目标是创建一种机器学习架构,该架构能够识别单导联心电图(ECG)信号中的阻塞性睡眠呼吸暂停(OSA)模式,并在临床数据集中表现出卓越的性能:我们使用中国医科大学附属医院睡眠中心的 1656 名患者数据集进行了研究,这些患者代表了不同的人群。为了检测呼吸暂停心电图片段并提取呼吸暂停特征,我们分别使用了高效网络及其部分层。此外,我们还比较了各种训练和数据预处理技术,以增强模型的预测能力,如设置类和样本权重或采用重叠和规则切片。最后,我们在 Apnea-ECG 数据库上与其他文献对比测试了我们的方法:我们的研究发现,使用重叠切片和样本权重设置,EfficientNet 模型实现了最佳的呼吸暂停节段检测,AUC 为 0.917,准确率为 0.855。对于 AHI > 30 的患者筛查,我们将训练好的模型与 XGBoost 结合使用,结果 AUC 为 0.975,准确率为 0.928。使用 PhysioNet 数据进行的其他测试表明,在筛选 OSA 水平的能力方面,我们的模型与现有模型的性能相当:我们所建议的架构,加上训练和预处理技术,在不同的人口数据集上表现出了令人钦佩的性能,使我们更接近于在 OSA 诊断中的实际应用。试验注册 本研究的数据是从台湾中国医药大学医院收集的回顾性数据,并获得了机构审查委员会 CMUH109-REC3-018 的批准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BioMedical Engineering OnLine
BioMedical Engineering OnLine 工程技术-工程:生物医学
CiteScore
6.70
自引率
2.60%
发文量
79
审稿时长
1 months
期刊介绍: BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering. BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to: Bioinformatics- Bioinstrumentation- Biomechanics- Biomedical Devices & Instrumentation- Biomedical Signal Processing- Healthcare Information Systems- Human Dynamics- Neural Engineering- Rehabilitation Engineering- Biomaterials- Biomedical Imaging & Image Processing- BioMEMS and On-Chip Devices- Bio-Micro/Nano Technologies- Biomolecular Engineering- Biosensors- Cardiovascular Systems Engineering- Cellular Engineering- Clinical Engineering- Computational Biology- Drug Delivery Technologies- Modeling Methodologies- Nanomaterials and Nanotechnology in Biomedicine- Respiratory Systems Engineering- Robotics in Medicine- Systems and Synthetic Biology- Systems Biology- Telemedicine/Smartphone Applications in Medicine- Therapeutic Systems, Devices and Technologies- Tissue Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信