A metabolic switch orchestrated by IL-18 and the cyclic dinucleotide cGAMP programs intestinal tolerance

IF 25.5 1区 医学 Q1 IMMUNOLOGY
Randall T. Mertens, Aditya Misra, Peng Xiao, Seungbyn Baek, Joseph M. Rone, Davide Mangani, Kisha N. Sivanathan, Adedamola S. Arojojoye, Samuel G. Awuah, Insuk Lee, Guo-Ping Shi, Boryana Petrova, Jeannette R. Brook, Ana C. Anderson, Richard A. Flavell, Naama Kanarek, Martin Hemberg, Roni Nowarski
{"title":"A metabolic switch orchestrated by IL-18 and the cyclic dinucleotide cGAMP programs intestinal tolerance","authors":"Randall T. Mertens, Aditya Misra, Peng Xiao, Seungbyn Baek, Joseph M. Rone, Davide Mangani, Kisha N. Sivanathan, Adedamola S. Arojojoye, Samuel G. Awuah, Insuk Lee, Guo-Ping Shi, Boryana Petrova, Jeannette R. Brook, Ana C. Anderson, Richard A. Flavell, Naama Kanarek, Martin Hemberg, Roni Nowarski","doi":"10.1016/j.immuni.2024.06.001","DOIUrl":null,"url":null,"abstract":"<p>Tissues are exposed to diverse inflammatory challenges that shape future inflammatory responses. While cellular metabolism regulates immune function, how metabolism programs and stabilizes immune states within tissues and tunes susceptibility to inflammation is poorly understood. Here, we describe an innate immune metabolic switch that programs long-term intestinal tolerance. Intestinal interleukin-18 (IL-18) stimulation elicited tolerogenic macrophages by preventing their proinflammatory glycolytic polarization via metabolic reprogramming to fatty acid oxidation (FAO). FAO reprogramming was triggered by IL-18 activation of SLC12A3 (NCC), leading to sodium influx, release of mitochondrial DNA, and activation of stimulator of interferon genes (STING). FAO was maintained in macrophages by a bistable switch that encoded memory of IL-18 stimulation and by intercellular positive feedback that sustained the production of macrophage-derived 2′3′-cyclic GMP–AMP (cGAMP) and epithelial-derived IL-18. Thus, a tissue-reinforced metabolic switch encodes durable immune tolerance in the gut and may enable reconstructing compromised immune tolerance in chronic inflammation.</p>","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"80 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2024.06.001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tissues are exposed to diverse inflammatory challenges that shape future inflammatory responses. While cellular metabolism regulates immune function, how metabolism programs and stabilizes immune states within tissues and tunes susceptibility to inflammation is poorly understood. Here, we describe an innate immune metabolic switch that programs long-term intestinal tolerance. Intestinal interleukin-18 (IL-18) stimulation elicited tolerogenic macrophages by preventing their proinflammatory glycolytic polarization via metabolic reprogramming to fatty acid oxidation (FAO). FAO reprogramming was triggered by IL-18 activation of SLC12A3 (NCC), leading to sodium influx, release of mitochondrial DNA, and activation of stimulator of interferon genes (STING). FAO was maintained in macrophages by a bistable switch that encoded memory of IL-18 stimulation and by intercellular positive feedback that sustained the production of macrophage-derived 2′3′-cyclic GMP–AMP (cGAMP) and epithelial-derived IL-18. Thus, a tissue-reinforced metabolic switch encodes durable immune tolerance in the gut and may enable reconstructing compromised immune tolerance in chronic inflammation.

Abstract Image

由 IL-18 和环状二核苷酸 cGAMP 协调的新陈代谢开关可调节肠道耐受性
组织会面临各种炎症挑战,这些挑战会影响未来的炎症反应。虽然细胞新陈代谢能调节免疫功能,但人们对新陈代谢如何编程和稳定组织内的免疫状态以及如何调整炎症易感性还知之甚少。在这里,我们描述了一种先天性免疫代谢开关,它可对长期肠道耐受性进行编程。肠道白细胞介素-18(IL-18)刺激可通过脂肪酸氧化(FAO)代谢重编程阻止巨噬细胞促炎性糖酵解极化,从而诱发耐受性巨噬细胞。脂肪酸氧化重编程是由 IL-18 激活 SLC12A3(NCC)触发的,从而导致钠流入、线粒体 DNA 释放和干扰素基因刺激器(STING)激活。巨噬细胞中的 FAO 是通过双稳态开关维持的,这种开关编码了对 IL-18 刺激的记忆,并通过细胞间正反馈维持巨噬细胞衍生的 2′3′-环 GMP-AMP (cGAMP) 和上皮衍生的 IL-18 的产生。因此,组织强化的新陈代谢转换编码了肠道中持久的免疫耐受,并可能使慢性炎症中受损的免疫耐受得以重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Immunity
Immunity 医学-免疫学
CiteScore
49.40
自引率
2.20%
发文量
205
审稿时长
6 months
期刊介绍: Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信